In before articles about classification model, I often only split the data set, then compare their performance, but if you split the data set again, the components of train set will differ, the test set will differ, at the same time, the performance of the classifier will change.
So, we should repeat split the train set and test set, compute the performance, then summary repeated measures, such as the mean of measure, the standard deviation of measures.
In the same way, in before articles about classification model, I often chose kinds of models which are designed by some default parameters, then compare their performance, and find out some classifier which suit data set better.
Suppose we have chosen some better models by simple split the data set and using some default models, how to compare these classifier in the depth of deeper?
Ok, we want to talk about this question in this article.
Firstly, we need to tune parameters in my model, not to use only default parameters, because maybe other parameters will lead to better prediction values.
Secondly, we tune parameters by using train set and test set.
However, different train-set or test-set will have different performance.
So, we must split our raw train set many times, each time we compute a measures, in the end, we could have series measures.
Ordinary, we choose 10-fold cross validation method to split data set and tune parameters.
Here, I recommence to use caret package.
The Classification and Regression Training (caret) package by Max Kuhn includes functions to streamline the model training process.
This package also provides a large number of tools for preparing, training, evaluating, and visualizing machine learning models and data.
We still use field goals data set as an example.
In before articles (classification model series II), we get the better models are logistic regression, artificial neural networks, boosting, so we use repeated cross-validation to tune parameters and compare their performance.
We get a series of measures by cross-validation, such as the mean of sensitivity is 0.06, the standard deviation of sensitivity is 0.06, ROC is auc (area under the ROC curve).
We could still tune the cut-off value to get better auc and tpr values.
# load the data set
library(nutshell)
data(field.goals)
# create a new binary variable for dataset
data <- transform(field.goals,
play.type = as.factor(ifelse(play.type == "FG good", "good", "bad")))
# head(data)
# summary(data)
###############################
### split the dataset
###############################
library(caret)
set.seed(1234)
train_index <- createDataPartition(data$play.type, p = .8, list = FALSE)
trainset <- data[train_index, ]
testset <- data[-train_index, ]
###############################
### compare models
###############################
ctrl <- trainControl(method = "repeatedcv", repeats = 5,
summaryFunction = twoClassSummary,
classProbs = TRUE,
savePredictions = TRUE)
### tune logistic regression
logistic_model <- train(play.type ~ yards, data = trainset,
method = "glm", family = binomial,
metric = "Sens",
trControl = ctrl)
logistic_model
## Generalized Linear Model
##
## 786 samples
## 1 predictor
## 2 classes: 'bad', 'good'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 707, 708, 708, 707, 707, 707, ...
## Resampling results:
##
## ROC Sens Spec
## 0.7503095 0.09083333 0.9809524
logistic_pred <- predict(logistic_model, testset, type = "prob")
fpr_tpr <- function(p, dataset) {
TPR <- rep(0, length(p))
FPR <- rep(0, length(p))
for(i in 1 : length(p)){
p0 <- p[order(p)[i]]
label_true <- ifelse(dataset$play.type == "good", 1, 0)
label_pred <- 1 * (p > p0)
TPR[i] <- sum(label_pred * label_true) / sum(label_true)
FPR[i] <- sum(label_pred * (1 - label_true)) / sum(1 - label_true)
}
list(fpr = FPR, tpr = TPR)
}
# plot logistic regression roc
logic_measures <- fpr_tpr(p = logistic_pred$good, dataset = testset)
plot(logic_measures$fpr, logic_measures$tpr, type = "l", col = 2,
ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)
Then, we could see the artificial neural network model.
Here, the function will be tune parameters “size” and “decay”, and automatically chose the optimal model by the largest auc value.
The performance nearly the same as logistic regression model after tune cut-off values.
### tune ann
ann_model <- train(play.type ~ yards, data = trainset,
method = "nnet",
trControl = ctrl)
## # weights: 4
## initial value 407.760405
## iter 10 value 309.916935
## iter 20 value 304.627226
## iter 30 value 304.272741
## iter 40 value 304.138587
## iter 50 value 304.090826
## iter 60 value 304.058485
## iter 70 value 304.049885
## iter 80 value 304.038649
## iter 90 value 304.032579
## iter 100 value 304.026519
## final value 304.026519
## stopped after 100 iterations
## # weights: 10
## initial value 657.307708
## iter 10 value 351.834960
## iter 20 value 351.248745
## iter 30 value 305.554581
## iter 40 value 304.368818
## iter 50 value 304.178925
## iter 60 value 304.065917
## iter 70 value 304.029034
## iter 80 value 304.017769
## iter 90 value 304.012093
## iter 100 value 304.009131
## final value 304.009131
## stopped after 100 iterations
## # weights: 16
## initial value 605.272447
## iter 10 value 350.005842
## iter 20 value 305.283257
## iter 30 value 304.057220
## iter 40 value 303.989329
## iter 50 value 303.911388
## iter 60 value 303.381991
## iter 70 value 303.260656
## iter 80 value 303.164386
## iter 90 value 303.122246
## iter 100 value 303.006836
## final value 303.006836
## stopped after 100 iterations
## # weights: 4
## initial value 393.978058
## final value 351.951519
## converged
## # weights: 10
## initial value 665.158336
## iter 10 value 350.331763
## iter 20 value 311.253800
## iter 30 value 308.254132
## iter 40 value 307.987057
## iter 50 value 307.669238
## iter 60 value 307.486852
## iter 70 value 307.411112
## final value 307.403968
## converged
## # weights: 16
## initial value 588.995599
## iter 10 value 323.973694
## iter 20 value 309.971436
## iter 30 value 308.205699
## iter 40 value 307.678290
## iter 50 value 307.314737
## iter 60 value 307.091271
## iter 70 value 306.940668
## iter 80 value 306.865568
## final value 306.862341
## converged
## # weights: 4
## initial value 384.970686
## final value 351.835498
## converged
## # weights: 10
## initial value 634.973735
## iter 10 value 332.524127
## iter 20 value 304.904268
## iter 30 value 304.213070
## iter 40 value 304.120898
## iter 50 value 304.094230
## iter 50 value 304.094228
## final value 304.094228
## converged
## # weights: 16
## initial value 495.413958
## iter 10 value 348.545573
## iter 20 value 305.381516
## iter 30 value 304.099103
## iter 40 value 304.062607
## iter 50 value 304.060972
## final value 304.059480
## converged
## # weights: 4
## initial value 735.333575
## iter 10 value 343.461183
## iter 20 value 305.482249
## iter 30 value 304.624084
## iter 40 value 304.364367
## iter 50 value 304.294710
## iter 60 value 304.263142
## iter 70 value 304.247873
## iter 80 value 304.232740
## iter 90 value 304.221205
## final value 304.219374
## converged
## # weights: 10
## initial value 748.723861
## iter 10 value 350.607543
## iter 20 value 304.708992
## iter 30 value 304.243302
## iter 40 value 304.227053
## iter 50 value 304.206768
## iter 60 value 304.189075
## iter 70 value 304.181657
## iter 80 value 304.165050
## iter 90 value 304.158140
## final value 304.157845
## converged
## # weights: 16
## initial value 474.671447
## iter 10 value 310.873279
## iter 20 value 305.293653
## iter 30 value 304.372958
## iter 40 value 304.275105
## iter 50 value 304.246007
## iter 60 value 304.187824
## final value 304.185087
## converged
## # weights: 4
## initial value 424.619975
## iter 10 value 353.762654
## iter 20 value 348.534276
## iter 30 value 309.435823
## final value 308.863570
## converged
## # weights: 10
## initial value 448.765249
## iter 10 value 330.662695
## iter 20 value 308.994013
## iter 30 value 308.262441
## iter 40 value 307.951395
## iter 50 value 307.659043
## iter 60 value 307.614102
## final value 307.612105
## converged
## # weights: 16
## initial value 545.390739
## iter 10 value 313.630609
## iter 20 value 310.124766
## iter 30 value 308.527706
## iter 40 value 307.960136
## iter 50 value 307.658489
## iter 60 value 307.590441
## final value 307.588848
## converged
## # weights: 4
## initial value 485.477478
## final value 353.451780
## converged
## # weights: 10
## initial value 453.982967
## iter 10 value 353.465528
## final value 353.452390
## converged
## # weights: 16
## initial value 723.550904
## iter 10 value 353.452406
## final value 353.452373
## converged
## # weights: 4
## initial value 635.277599
## final value 351.835038
## converged
## # weights: 10
## initial value 854.788889
## iter 10 value 351.835049
## final value 351.835016
## converged
## # weights: 16
## initial value 982.162325
## final value 351.834927
## converged
## # weights: 4
## initial value 397.983930
## iter 10 value 326.105050
## iter 20 value 308.618880
## final value 308.618572
## converged
## # weights: 10
## initial value 655.251362
## iter 10 value 325.270718
## iter 20 value 312.453188
## iter 30 value 309.295341
## final value 309.273249
## converged
## # weights: 16
## initial value 676.591126
## iter 10 value 348.412754
## iter 20 value 308.877902
## iter 30 value 307.806039
## iter 40 value 307.462387
## iter 50 value 307.304594
## iter 60 value 307.275925
## iter 70 value 307.256361
## final value 307.255506
## converged
## # weights: 4
## initial value 511.403378
## final value 351.835635
## converged
## # weights: 10
## initial value 444.961850
## iter 10 value 351.835810
## final value 351.835718
## converged
## # weights: 16
## initial value 355.650179
## iter 10 value 350.888546
## iter 20 value 308.128990
## iter 30 value 304.470041
## final value 304.421954
## converged
## # weights: 4
## initial value 399.390139
## final value 351.835023
## converged
## # weights: 10
## initial value 448.310668
## iter 10 value 351.835035
## final value 351.835018
## converged
## # weights: 16
## initial value 362.495685
## iter 10 value 305.060029
## iter 20 value 303.941845
## iter 30 value 303.619157
## iter 40 value 303.552377
## iter 50 value 303.492656
## iter 60 value 303.478651
## iter 70 value 303.448239
## iter 80 value 303.351646
## iter 90 value 303.163650
## iter 100 value 302.973360
## final value 302.973360
## stopped after 100 iterations
## # weights: 4
## initial value 489.011504
## iter 10 value 351.955177
## final value 351.951683
## converged
## # weights: 10
## initial value 421.968775
## iter 10 value 344.306516
## iter 20 value 308.126023
## iter 30 value 307.400545
## iter 40 value 306.948934
## iter 50 value 306.712399
## iter 60 value 306.669510
## final value 306.665023
## converged
## # weights: 16
## initial value 397.306744
## iter 10 value 324.997805
## iter 20 value 308.418138
## iter 30 value 307.891716
## iter 40 value 307.454173
## iter 50 value 306.969537
## iter 60 value 306.749786
## iter 70 value 306.648257
## iter 80 value 306.640162
## final value 306.640158
## converged
## # weights: 4
## initial value 568.555454
## iter 10 value 351.835205
## iter 10 value 351.835205
## final value 351.835205
## converged
## # weights: 10
## initial value 687.698014
## iter 10 value 318.384816
## iter 20 value 304.087462
## iter 30 value 303.558029
## iter 40 value 303.539750
## final value 303.533262
## converged
## # weights: 16
## initial value 358.878726
## iter 10 value 325.756020
## iter 20 value 304.445920
## iter 30 value 303.740076
## iter 40 value 303.641723
## iter 50 value 303.537025
## iter 60 value 303.507049
## iter 70 value 303.494213
## final value 303.492489
## converged
## # weights: 4
## initial value 424.628709
## final value 353.451594
## converged
## # weights: 10
## initial value 731.576748
## iter 10 value 353.448606
## iter 20 value 346.960264
## iter 30 value 311.499748
## iter 40 value 310.057754
## iter 50 value 309.842833
## final value 309.764691
## converged
## # weights: 16
## initial value 392.605460
## iter 10 value 342.742225
## iter 20 value 312.105873
## iter 30 value 310.189214
## iter 40 value 309.880199
## iter 50 value 309.825130
## iter 60 value 309.739882
## iter 70 value 309.717153
## iter 80 value 309.709170
## iter 90 value 309.701932
## iter 100 value 309.700481
## final value 309.700481
## stopped after 100 iterations
## # weights: 4
## initial value 573.163019
## final value 353.566930
## converged
## # weights: 10
## initial value 417.774052
## iter 10 value 323.451022
## iter 20 value 315.081659
## iter 30 value 314.721726
## final value 314.721460
## converged
## # weights: 16
## initial value 648.112037
## iter 10 value 353.895088
## iter 20 value 326.788085
## iter 30 value 315.318685
## iter 40 value 314.337454
## iter 50 value 313.559646
## iter 60 value 313.325105
## iter 70 value 313.246026
## iter 80 value 313.225620
## final value 313.225540
## converged
## # weights: 4
## initial value 455.923372
## final value 353.452138
## converged
## # weights: 10
## initial value 433.326645
## iter 10 value 353.451810
## final value 353.451781
## converged
## # weights: 16
## initial value 505.497060
## iter 10 value 353.449870
## iter 20 value 317.277229
## iter 30 value 310.943392
## iter 40 value 309.947337
## iter 50 value 309.824714
## iter 60 value 309.737506
## iter 70 value 308.526485
## iter 80 value 308.280437
## iter 90 value 307.911135
## iter 100 value 307.383707
## final value 307.383707
## stopped after 100 iterations
## # weights: 4
## initial value 596.843376
## final value 353.451552
## converged
## # weights: 10
## initial value 453.533761
## iter 10 value 353.451509
## final value 353.451470
## converged
## # weights: 16
## initial value 578.303080
## iter 10 value 347.147631
## iter 20 value 312.947762
## iter 30 value 311.963127
## iter 40 value 310.976582
## iter 50 value 310.691903
## iter 60 value 310.484031
## iter 70 value 310.377920
## iter 80 value 310.252245
## iter 90 value 310.124426
## iter 100 value 309.930836
## final value 309.930836
## stopped after 100 iterations
## # weights: 4
## initial value 472.293114
## final value 353.567161
## converged
## # weights: 10
## initial value 375.312743
## iter 10 value 353.561851
## iter 20 value 353.549095
## final value 353.549074
## converged
## # weights: 16
## initial value 721.843570
## iter 10 value 350.300331
## iter 20 value 317.006616
## iter 30 value 315.671006
## iter 40 value 314.967535
## iter 50 value 314.767347
## iter 60 value 314.715297
## iter 70 value 314.704398
## final value 314.704332
## converged
## # weights: 4
## initial value 479.367772
## final value 353.451775
## converged
## # weights: 10
## initial value 423.181956
## iter 10 value 321.563186
## iter 20 value 312.244470
## iter 30 value 311.890510
## iter 40 value 311.689741
## iter 50 value 310.724913
## iter 60 value 310.601201
## iter 70 value 310.206368
## iter 80 value 309.891611
## iter 90 value 309.644017
## final value 309.606785
## converged
## # weights: 16
## initial value 563.383177
## iter 10 value 353.452572
## final value 353.452355
## converged
## # weights: 4
## initial value 645.537132
## final value 351.835025
## converged
## # weights: 10
## initial value 529.559424
## iter 10 value 351.804858
## iter 20 value 302.525193
## iter 30 value 300.517979
## iter 40 value 300.339561
## iter 50 value 300.268268
## iter 60 value 300.200621
## iter 70 value 300.169649
## iter 80 value 300.145032
## iter 90 value 300.139728
## final value 300.117648
## converged
## # weights: 16
## initial value 592.436467
## iter 10 value 349.485245
## iter 20 value 301.545366
## iter 30 value 300.488930
## iter 40 value 300.428247
## iter 50 value 300.268575
## iter 60 value 300.200685
## iter 70 value 300.174242
## iter 80 value 300.142262
## iter 90 value 300.135116
## iter 100 value 300.110015
## final value 300.110015
## stopped after 100 iterations
## # weights: 4
## initial value 496.616331
## final value 351.951756
## converged
## # weights: 10
## initial value 491.032635
## iter 10 value 349.726980
## iter 20 value 305.264635
## iter 30 value 304.752910
## iter 40 value 304.296345
## iter 50 value 303.912582
## iter 60 value 303.802122
## iter 70 value 303.752248
## final value 303.751090
## converged
## # weights: 16
## initial value 515.464862
## iter 10 value 345.693467
## iter 20 value 305.157795
## iter 30 value 304.649322
## iter 40 value 304.326202
## iter 50 value 304.193281
## iter 60 value 304.088208
## iter 70 value 304.063651
## final value 304.062073
## converged
## # weights: 4
## initial value 484.893857
## iter 10 value 351.835270
## iter 10 value 351.835270
## final value 351.835270
## converged
## # weights: 10
## initial value 745.144513
## iter 10 value 350.767247
## iter 20 value 304.096463
## iter 30 value 300.640229
## iter 40 value 300.427651
## iter 50 value 300.333694
## iter 60 value 300.245862
## iter 70 value 300.237712
## iter 80 value 300.220831
## iter 90 value 300.219295
## final value 300.218767
## converged
## # weights: 16
## initial value 532.970488
## iter 10 value 348.963668
## iter 20 value 300.713452
## iter 30 value 300.382552
## iter 40 value 300.359623
## iter 50 value 300.240437
## iter 60 value 299.534703
## iter 70 value 298.817395
## iter 80 value 298.492711
## iter 90 value 298.117251
## iter 100 value 297.976743
## final value 297.976743
## stopped after 100 iterations
## # weights: 4
## initial value 743.347655
## iter 10 value 351.835058
## iter 10 value 351.835057
## final value 351.835057
## converged
## # weights: 10
## initial value 620.293125
## iter 10 value 351.832715
## iter 20 value 345.343886
## iter 30 value 303.038049
## iter 40 value 301.590701
## iter 50 value 301.385371
## iter 60 value 301.360857
## iter 70 value 301.285446
## iter 80 value 301.254463
## iter 90 value 301.243347
## iter 100 value 301.210705
## final value 301.210705
## stopped after 100 iterations
## # weights: 16
## initial value 436.184964
## iter 10 value 327.892214
## iter 20 value 301.889876
## iter 30 value 301.492178
## iter 40 value 301.292905
## iter 50 value 300.750108
## iter 60 value 300.189694
## iter 70 value 299.895621
## iter 80 value 299.413324
## iter 90 value 298.745042
## iter 100 value 297.420572
## final value 297.420572
## stopped after 100 iterations
## # weights: 4
## initial value 485.666283
## final value 351.951804
## converged
## # weights: 10
## initial value 463.923172
## iter 10 value 351.009038
## iter 20 value 306.698566
## iter 30 value 305.906576
## iter 40 value 305.550408
## iter 50 value 305.120603
## iter 60 value 304.873294
## iter 70 value 304.759550
## iter 80 value 304.748683
## final value 304.748465
## converged
## # weights: 16
## initial value 452.604598
## iter 10 value 349.972323
## iter 20 value 306.257850
## iter 30 value 305.751550
## iter 40 value 305.389776
## iter 50 value 305.220199
## iter 60 value 305.099865
## iter 70 value 304.985457
## iter 80 value 304.719250
## iter 90 value 304.640656
## iter 100 value 304.620859
## final value 304.620859
## stopped after 100 iterations
## # weights: 4
## initial value 743.382218
## final value 351.845835
## converged
## # weights: 10
## initial value 527.075900
## iter 10 value 351.835479
## final value 351.835455
## converged
## # weights: 16
## initial value 864.239359
## iter 10 value 341.915819
## iter 20 value 302.974497
## iter 30 value 301.178464
## iter 40 value 300.386436
## iter 50 value 300.105213
## iter 60 value 299.771881
## iter 70 value 299.581249
## iter 80 value 299.413650
## iter 90 value 298.781583
## iter 100 value 298.085206
## final value 298.085206
## stopped after 100 iterations
## # weights: 4
## initial value 498.596338
## iter 10 value 353.450644
## iter 20 value 350.351679
## iter 30 value 312.111105
## iter 40 value 306.079383
## iter 50 value 305.738162
## iter 60 value 305.618524
## iter 70 value 305.571508
## iter 80 value 305.558350
## iter 90 value 305.547557
## iter 100 value 305.537866
## final value 305.537866
## stopped after 100 iterations
## # weights: 10
## initial value 819.004248
## iter 10 value 333.286030
## iter 20 value 306.753880
## iter 30 value 305.743599
## iter 40 value 305.625298
## iter 50 value 305.544952
## iter 60 value 305.515176
## iter 70 value 305.508751
## final value 305.496532
## converged
## # weights: 16
## initial value 684.367124
## iter 10 value 337.194692
## iter 20 value 306.649541
## iter 30 value 305.659528
## iter 40 value 305.583489
## iter 50 value 305.559279
## iter 60 value 305.531101
## iter 70 value 305.517508
## iter 80 value 305.503779
## iter 90 value 305.408212
## iter 100 value 305.141876
## final value 305.141876
## stopped after 100 iterations
## # weights: 4
## initial value 515.340525
## iter 10 value 343.378940
## iter 20 value 310.224161
## final value 310.059896
## converged
## # weights: 10
## initial value 565.026388
## iter 10 value 353.342732
## iter 20 value 315.680438
## iter 30 value 310.034798
## iter 40 value 309.640541
## iter 50 value 309.446468
## iter 60 value 309.390369
## final value 309.390128
## converged
## # weights: 16
## initial value 1097.366680
## iter 10 value 401.856579
## iter 20 value 339.611867
## iter 30 value 310.571656
## iter 40 value 309.803153
## iter 50 value 309.646187
## iter 60 value 309.094336
## iter 70 value 308.889943
## iter 80 value 308.795393
## iter 90 value 308.775793
## iter 100 value 308.775383
## final value 308.775383
## stopped after 100 iterations
## # weights: 4
## initial value 499.878030
## final value 353.451781
## converged
## # weights: 10
## initial value 562.815320
## final value 353.451872
## converged
## # weights: 16
## initial value 374.681229
## iter 10 value 343.827506
## iter 20 value 308.494318
## iter 30 value 305.751691
## iter 40 value 305.004876
## iter 50 value 304.175431
## iter 60 value 303.869041
## iter 70 value 303.860084
## iter 80 value 303.844701
## iter 90 value 303.794273
## iter 100 value 303.744366
## final value 303.744366
## stopped after 100 iterations
## # weights: 4
## initial value 735.784515
## iter 10 value 310.229878
## iter 20 value 307.909477
## iter 30 value 307.696000
## iter 40 value 307.575957
## iter 50 value 307.553555
## iter 60 value 307.544410
## iter 70 value 307.531147
## iter 80 value 307.523727
## iter 90 value 307.517623
## iter 100 value 307.513289
## final value 307.513289
## stopped after 100 iterations
## # weights: 10
## initial value 586.874635
## iter 10 value 351.835084
## final value 351.835018
## converged
## # weights: 16
## initial value 905.343106
## iter 10 value 351.834815
## iter 20 value 348.641748
## iter 30 value 307.999166
## iter 40 value 307.535207
## iter 50 value 307.257000
## iter 60 value 306.693942
## iter 70 value 306.110903
## iter 80 value 306.088780
## iter 90 value 306.069082
## iter 100 value 306.048692
## final value 306.048692
## stopped after 100 iterations
## # weights: 4
## initial value 388.683499
## final value 351.951744
## converged
## # weights: 10
## initial value 498.460498
## iter 10 value 326.061571
## iter 20 value 311.986431
## iter 30 value 311.429948
## iter 40 value 311.095051
## iter 50 value 310.772414
## iter 60 value 310.621328
## iter 70 value 310.605408
## final value 310.605401
## converged
## # weights: 16
## initial value 440.766095
## iter 10 value 326.343941
## iter 20 value 311.734050
## iter 30 value 310.638558
## iter 40 value 310.453164
## iter 50 value 310.304772
## iter 60 value 310.246179
## iter 70 value 310.225748
## final value 310.225353
## converged
## # weights: 4
## initial value 543.458468
## iter 10 value 351.835269
## iter 10 value 351.835269
## final value 351.835269
## converged
## # weights: 10
## initial value 582.821496
## iter 10 value 343.477808
## iter 20 value 309.423628
## iter 30 value 308.009565
## iter 40 value 307.693516
## iter 50 value 307.629747
## iter 60 value 307.579135
## final value 307.562701
## converged
## # weights: 16
## initial value 437.422388
## iter 10 value 319.846620
## iter 20 value 308.058067
## iter 30 value 307.740744
## iter 40 value 307.657051
## iter 50 value 307.572628
## iter 60 value 307.549363
## iter 70 value 307.541145
## iter 80 value 307.522792
## iter 90 value 307.460553
## iter 100 value 306.832569
## final value 306.832569
## stopped after 100 iterations
## # weights: 4
## initial value 359.864559
## iter 10 value 351.835035
## iter 10 value 351.835035
## final value 351.835035
## converged
## # weights: 10
## initial value 565.700042
## final value 351.835073
## converged
## # weights: 16
## initial value 644.170970
## iter 10 value 351.798387
## iter 20 value 347.334596
## iter 30 value 308.238735
## iter 40 value 307.526548
## iter 50 value 307.449006
## iter 60 value 307.408890
## iter 70 value 307.352574
## iter 80 value 307.330224
## iter 90 value 307.318712
## iter 100 value 307.314110
## final value 307.314110
## stopped after 100 iterations
## # weights: 4
## initial value 642.281995
## iter 10 value 322.810015
## iter 20 value 311.757453
## final value 311.533246
## converged
## # weights: 10
## initial value 471.835377
## iter 10 value 341.122546
## iter 20 value 314.179021
## iter 30 value 311.589001
## iter 40 value 311.104496
## iter 50 value 310.749008
## iter 60 value 310.542008
## iter 70 value 310.449750
## iter 80 value 310.442652
## final value 310.442488
## converged
## # weights: 16
## initial value 711.625146
## iter 10 value 350.799767
## iter 20 value 314.780748
## iter 30 value 311.264610
## iter 40 value 310.776776
## iter 50 value 310.370149
## iter 60 value 310.189646
## iter 70 value 310.104948
## iter 80 value 310.087170
## iter 90 value 310.085316
## iter 90 value 310.085314
## final value 310.085314
## converged
## # weights: 4
## initial value 403.968568
## final value 351.835482
## converged
## # weights: 10
## initial value 647.806005
## iter 10 value 351.835556
## final value 351.835437
## converged
## # weights: 16
## initial value 523.389946
## iter 10 value 312.783410
## iter 20 value 309.099470
## iter 30 value 307.942834
## iter 40 value 307.600201
## iter 50 value 307.477733
## iter 60 value 307.429305
## iter 70 value 307.411479
## iter 80 value 307.324344
## iter 90 value 306.823942
## iter 100 value 306.543883
## final value 306.543883
## stopped after 100 iterations
## # weights: 4
## initial value 476.148948
## final value 351.835031
## converged
## # weights: 10
## initial value 760.326081
## final value 351.835000
## converged
## # weights: 16
## initial value 972.491404
## iter 10 value 351.518408
## iter 20 value 309.260903
## iter 30 value 307.516102
## iter 40 value 307.391313
## iter 50 value 307.258837
## iter 60 value 307.197217
## iter 70 value 307.158063
## iter 80 value 307.106404
## iter 90 value 306.819826
## iter 100 value 306.689009
## final value 306.689009
## stopped after 100 iterations
## # weights: 4
## initial value 492.091682
## iter 10 value 339.447244
## iter 20 value 311.313867
## final value 311.312983
## converged
## # weights: 10
## initial value 441.853606
## iter 10 value 339.849254
## iter 20 value 311.342553
## iter 30 value 310.907255
## iter 40 value 310.547598
## iter 50 value 310.330242
## iter 60 value 310.250000
## final value 310.248433
## converged
## # weights: 16
## initial value 422.361839
## iter 10 value 331.850911
## iter 20 value 311.679581
## iter 30 value 311.104008
## iter 40 value 310.836974
## iter 50 value 310.666528
## iter 60 value 310.613497
## iter 70 value 310.603449
## final value 310.603385
## converged
## # weights: 4
## initial value 401.270288
## final value 351.835323
## converged
## # weights: 10
## initial value 435.887244
## iter 10 value 351.143892
## iter 20 value 321.388205
## iter 30 value 309.505262
## iter 40 value 307.523279
## iter 50 value 307.322572
## iter 60 value 307.221755
## iter 70 value 307.208754
## iter 80 value 307.187881
## final value 307.187041
## converged
## # weights: 16
## initial value 729.414109
## iter 10 value 351.804011
## iter 20 value 308.702930
## iter 30 value 307.239753
## final value 307.186294
## converged
## # weights: 4
## initial value 433.680756
## final value 351.835003
## converged
## # weights: 10
## initial value 357.288673
## iter 10 value 351.835886
## final value 351.835595
## converged
## # weights: 16
## initial value 506.119312
## iter 10 value 351.094890
## iter 20 value 338.715820
## iter 30 value 312.893420
## iter 40 value 307.693730
## iter 50 value 307.443797
## iter 60 value 307.389368
## iter 70 value 307.370780
## final value 307.368351
## converged
## # weights: 4
## initial value 406.731726
## final value 351.951595
## converged
## # weights: 10
## initial value 628.782654
## iter 10 value 342.906006
## iter 20 value 313.195003
## iter 30 value 312.165073
## iter 40 value 311.472844
## iter 50 value 311.180049
## iter 60 value 311.132731
## final value 311.132574
## converged
## # weights: 16
## initial value 568.937962
## iter 10 value 348.364623
## iter 20 value 312.111592
## iter 30 value 311.681816
## iter 40 value 311.187735
## iter 50 value 310.763943
## iter 60 value 310.486491
## iter 70 value 310.279370
## iter 80 value 310.157193
## iter 90 value 310.096345
## iter 100 value 310.086846
## final value 310.086846
## stopped after 100 iterations
## # weights: 4
## initial value 506.248616
## iter 10 value 349.638173
## iter 20 value 309.131317
## iter 30 value 307.863222
## iter 40 value 307.603889
## iter 50 value 307.566253
## iter 60 value 307.543340
## iter 70 value 307.520158
## iter 80 value 307.508425
## iter 90 value 307.500828
## iter 100 value 307.496342
## final value 307.496342
## stopped after 100 iterations
## # weights: 10
## initial value 831.886744
## iter 10 value 345.975343
## iter 20 value 317.065914
## iter 30 value 309.591810
## iter 40 value 307.797659
## iter 50 value 307.590047
## iter 60 value 307.546055
## iter 70 value 307.505814
## iter 80 value 307.499999
## iter 90 value 307.488236
## iter 100 value 307.487159
## final value 307.487159
## stopped after 100 iterations
## # weights: 16
## initial value 842.662416
## iter 10 value 320.856043
## iter 20 value 308.078473
## iter 30 value 307.350971
## iter 40 value 307.052269
## iter 50 value 306.686399
## iter 60 value 306.457347
## iter 70 value 306.371226
## iter 80 value 306.234629
## iter 90 value 306.042818
## iter 100 value 305.887422
## final value 305.887422
## stopped after 100 iterations
## # weights: 4
## initial value 671.859211
## final value 353.451227
## converged
## # weights: 10
## initial value 452.369034
## iter 10 value 353.459621
## iter 20 value 353.451556
## iter 20 value 353.451553
## iter 20 value 353.451553
## final value 353.451553
## converged
## # weights: 16
## initial value 1253.812268
## final value 353.451562
## converged
## # weights: 4
## initial value 554.365004
## iter 10 value 354.327356
## iter 20 value 313.366030
## iter 30 value 312.635843
## iter 30 value 312.635840
## iter 30 value 312.635840
## final value 312.635840
## converged
## # weights: 10
## initial value 763.174244
## iter 10 value 314.304481
## iter 20 value 311.198409
## iter 30 value 310.396464
## iter 40 value 310.064017
## iter 50 value 309.884578
## iter 60 value 309.844476
## iter 70 value 309.841126
## final value 309.841097
## converged
## # weights: 16
## initial value 383.808341
## iter 10 value 332.871301
## iter 20 value 312.613829
## iter 30 value 311.054564
## iter 40 value 310.451729
## iter 50 value 310.290325
## iter 60 value 310.179346
## iter 70 value 310.130930
## iter 80 value 310.126250
## final value 310.126237
## converged
## # weights: 4
## initial value 579.064629
## final value 353.452475
## converged
## # weights: 10
## initial value 653.239490
## iter 10 value 311.845780
## iter 20 value 306.961054
## iter 30 value 306.744262
## iter 40 value 306.692148
## iter 50 value 306.652354
## iter 60 value 306.623285
## iter 70 value 306.551809
## iter 80 value 305.906679
## iter 90 value 305.846001
## iter 100 value 305.664543
## final value 305.664543
## stopped after 100 iterations
## # weights: 16
## initial value 662.936069
## iter 10 value 353.456105
## iter 20 value 352.945495
## iter 30 value 307.533276
## iter 40 value 306.869549
## iter 50 value 306.744729
## iter 60 value 306.557457
## iter 70 value 305.996759
## iter 80 value 305.675720
## iter 90 value 305.553950
## iter 100 value 305.440413
## final value 305.440413
## stopped after 100 iterations
## # weights: 4
## initial value 613.013037
## iter 10 value 351.835133
## iter 10 value 351.835133
## final value 351.835133
## converged
## # weights: 10
## initial value 657.729522
## final value 351.835033
## converged
## # weights: 16
## initial value 578.552934
## iter 10 value 351.834768
## iter 20 value 330.408526
## iter 30 value 300.554597
## iter 40 value 300.383927
## iter 50 value 300.367982
## iter 60 value 300.293239
## iter 70 value 300.269758
## iter 80 value 300.256777
## final value 300.239972
## converged
## # weights: 4
## initial value 618.843416
## iter 10 value 351.951567
## final value 351.951366
## converged
## # weights: 10
## initial value 415.954054
## iter 10 value 349.794004
## iter 20 value 311.810390
## iter 30 value 303.854481
## iter 40 value 303.728425
## iter 50 value 303.675134
## final value 303.674817
## converged
## # weights: 16
## initial value 461.826882
## iter 10 value 350.474267
## iter 20 value 308.828744
## iter 30 value 305.537201
## final value 305.385187
## converged
## # weights: 4
## initial value 544.818733
## iter 10 value 348.738558
## iter 20 value 300.992656
## iter 30 value 300.420966
## final value 300.372816
## converged
## # weights: 10
## initial value 420.218645
## iter 10 value 351.835302
## final value 351.835286
## converged
## # weights: 16
## initial value 359.237886
## iter 10 value 347.310635
## iter 20 value 301.469256
## iter 30 value 300.321671
## final value 300.299542
## converged
## # weights: 4
## initial value 441.736015
## iter 10 value 309.635399
## iter 20 value 306.014842
## iter 30 value 305.182942
## iter 40 value 304.899657
## iter 50 value 304.832965
## iter 60 value 304.797208
## iter 70 value 304.772547
## iter 80 value 304.752428
## final value 304.736540
## converged
## # weights: 10
## initial value 383.682591
## iter 10 value 346.670630
## iter 20 value 305.388924
## iter 30 value 304.813138
## iter 40 value 304.742349
## iter 50 value 304.702091
## iter 60 value 304.542333
## iter 70 value 304.002277
## iter 80 value 303.658985
## iter 90 value 303.184732
## iter 100 value 302.534715
## final value 302.534715
## stopped after 100 iterations
## # weights: 16
## initial value 371.141122
## iter 10 value 351.835059
## final value 351.835011
## converged
## # weights: 4
## initial value 354.969456
## final value 351.951773
## converged
## # weights: 10
## initial value 383.069848
## iter 10 value 313.495008
## iter 20 value 309.323455
## iter 30 value 308.875114
## iter 40 value 308.739691
## iter 50 value 308.715317
## iter 60 value 308.703491
## final value 308.701865
## converged
## # weights: 16
## initial value 378.969977
## iter 10 value 351.406070
## iter 20 value 310.159526
## iter 30 value 309.156815
## iter 40 value 308.588404
## iter 50 value 308.218021
## iter 60 value 308.089699
## iter 70 value 308.007450
## iter 80 value 307.963569
## iter 90 value 307.963100
## final value 307.963094
## converged
## # weights: 4
## initial value 570.075868
## iter 10 value 351.835274
## iter 10 value 351.835274
## final value 351.835274
## converged
## # weights: 10
## initial value 766.440901
## iter 10 value 310.544655
## iter 20 value 305.803274
## iter 30 value 305.193894
## iter 40 value 304.876421
## iter 50 value 304.829678
## iter 60 value 304.789605
## iter 70 value 304.779994
## iter 80 value 304.776710
## final value 304.776495
## converged
## # weights: 16
## initial value 365.968272
## iter 10 value 341.976501
## iter 20 value 305.578087
## iter 30 value 304.917064
## iter 40 value 304.800313
## iter 50 value 304.771494
## iter 60 value 304.642272
## iter 70 value 304.189122
## iter 80 value 303.787232
## iter 90 value 303.421542
## iter 100 value 303.073568
## final value 303.073568
## stopped after 100 iterations
## # weights: 4
## initial value 407.283871
## iter 10 value 345.838533
## iter 20 value 306.220900
## iter 30 value 306.014111
## iter 40 value 305.920773
## iter 50 value 305.870330
## iter 60 value 305.848128
## iter 70 value 305.838153
## iter 80 value 305.830856
## iter 90 value 305.825323
## iter 100 value 305.818925
## final value 305.818925
## stopped after 100 iterations
## # weights: 10
## initial value 695.216633
## iter 10 value 351.835075
## final value 351.835017
## converged
## # weights: 16
## initial value 354.719444
## iter 10 value 320.079876
## iter 20 value 306.361346
## iter 30 value 305.915072
## iter 40 value 305.851007
## iter 50 value 305.810654
## iter 60 value 305.065665
## iter 70 value 304.951423
## iter 80 value 304.847457
## iter 90 value 304.652188
## iter 100 value 304.455756
## final value 304.455756
## stopped after 100 iterations
## # weights: 4
## initial value 451.214831
## iter 10 value 352.187543
## final value 351.951566
## converged
## # weights: 10
## initial value 395.478972
## iter 10 value 351.617749
## iter 20 value 340.771132
## iter 30 value 310.128245
## iter 40 value 309.377369
## iter 50 value 309.291125
## iter 60 value 309.084111
## iter 70 value 309.040335
## iter 80 value 309.032735
## iter 80 value 309.032734
## iter 80 value 309.032734
## final value 309.032734
## converged
## # weights: 16
## initial value 542.998246
## iter 10 value 352.105898
## iter 20 value 310.814279
## iter 30 value 310.432008
## iter 40 value 309.818658
## iter 50 value 309.610022
## iter 60 value 309.471260
## final value 309.464525
## converged
## # weights: 4
## initial value 517.491206
## iter 10 value 348.355075
## iter 20 value 310.696504
## iter 30 value 307.869081
## iter 40 value 306.350952
## iter 50 value 306.031928
## iter 60 value 305.942775
## iter 70 value 305.890933
## iter 80 value 305.883074
## iter 90 value 305.874557
## iter 90 value 305.874557
## final value 305.874557
## converged
## # weights: 10
## initial value 390.586542
## iter 10 value 351.835322
## final value 351.835315
## converged
## # weights: 16
## initial value 352.101020
## iter 10 value 308.922228
## iter 20 value 306.392861
## iter 30 value 305.885269
## iter 40 value 305.713261
## iter 50 value 304.922807
## iter 60 value 304.636772
## iter 70 value 304.066069
## iter 80 value 303.842059
## iter 90 value 302.899708
## iter 100 value 302.836484
## final value 302.836484
## stopped after 100 iterations
## # weights: 4
## initial value 406.159803
## final value 353.451526
## converged
## # weights: 10
## initial value 538.802585
## iter 10 value 353.451596
## final value 353.451556
## converged
## # weights: 16
## initial value 362.774245
## iter 10 value 350.286676
## iter 20 value 308.247774
## iter 30 value 304.264165
## iter 40 value 303.483986
## iter 50 value 303.397140
## iter 60 value 303.358215
## iter 70 value 303.296075
## iter 80 value 303.282862
## iter 90 value 303.278178
## iter 100 value 303.269128
## final value 303.269128
## stopped after 100 iterations
## # weights: 4
## initial value 500.280177
## iter 10 value 354.900640
## iter 20 value 344.192117
## iter 30 value 308.408053
## final value 308.213092
## converged
## # weights: 10
## initial value 453.030834
## iter 10 value 352.078590
## iter 20 value 310.775513
## iter 30 value 308.112675
## iter 40 value 307.876338
## iter 50 value 307.528591
## iter 60 value 307.410530
## iter 70 value 307.389785
## final value 307.389367
## converged
## # weights: 16
## initial value 721.542360
## iter 10 value 337.549294
## iter 20 value 308.855276
## iter 30 value 308.399577
## iter 40 value 307.465872
## iter 50 value 306.792459
## iter 60 value 306.619021
## iter 70 value 306.531604
## iter 80 value 306.477626
## iter 90 value 306.471489
## iter 90 value 306.471487
## iter 90 value 306.471487
## final value 306.471487
## converged
## # weights: 4
## initial value 653.876840
## iter 10 value 353.451813
## iter 10 value 353.451813
## final value 353.451813
## converged
## # weights: 10
## initial value 490.649279
## iter 10 value 353.452170
## final value 353.452131
## converged
## # weights: 16
## initial value 567.633693
## iter 10 value 345.820607
## iter 20 value 305.601153
## iter 30 value 303.588581
## iter 40 value 303.419073
## iter 50 value 303.391905
## iter 60 value 303.367533
## final value 303.356398
## converged
## # weights: 4
## initial value 434.859412
## final value 353.451503
## converged
## # weights: 10
## initial value 370.728389
## iter 10 value 353.451593
## final value 353.451551
## converged
## # weights: 16
## initial value 417.676708
## iter 10 value 338.953808
## iter 20 value 308.340801
## iter 30 value 306.958597
## iter 40 value 306.778364
## iter 50 value 306.669845
## iter 60 value 306.547692
## iter 70 value 306.528241
## iter 80 value 306.514552
## iter 90 value 306.510171
## iter 100 value 306.486004
## final value 306.486004
## stopped after 100 iterations
## # weights: 4
## initial value 453.622427
## iter 10 value 353.580634
## final value 353.567255
## converged
## # weights: 10
## initial value 580.410680
## iter 10 value 353.696744
## iter 20 value 353.633242
## iter 30 value 353.549671
## final value 353.549383
## converged
## # weights: 16
## initial value 422.118437
## iter 10 value 339.096195
## iter 20 value 312.131360
## iter 30 value 310.503129
## iter 40 value 309.958330
## iter 50 value 309.840819
## iter 60 value 309.785798
## final value 309.784268
## converged
## # weights: 4
## initial value 578.452674
## final value 353.451795
## converged
## # weights: 10
## initial value 475.139157
## iter 10 value 337.282092
## iter 20 value 307.062585
## iter 30 value 306.729511
## iter 40 value 306.628106
## iter 50 value 306.548949
## iter 60 value 306.255612
## iter 70 value 305.929759
## iter 80 value 305.620370
## iter 90 value 305.434103
## iter 100 value 305.302875
## final value 305.302875
## stopped after 100 iterations
## # weights: 16
## initial value 470.387841
## iter 10 value 353.450869
## iter 20 value 309.898965
## iter 30 value 306.734907
## iter 40 value 306.699846
## iter 50 value 306.654024
## iter 60 value 306.638498
## iter 70 value 306.587131
## final value 306.584738
## converged
## # weights: 4
## initial value 644.614345
## iter 10 value 353.451681
## iter 10 value 353.451681
## final value 353.451681
## converged
## # weights: 10
## initial value 1068.660371
## iter 10 value 316.467817
## iter 20 value 303.591130
## iter 30 value 303.035244
## iter 40 value 302.973416
## iter 50 value 302.871969
## iter 60 value 302.860451
## iter 70 value 302.818161
## iter 80 value 302.813398
## iter 90 value 302.789989
## iter 100 value 302.785452
## final value 302.785452
## stopped after 100 iterations
## # weights: 16
## initial value 765.044742
## iter 10 value 353.451638
## final value 353.451526
## converged
## # weights: 4
## initial value 355.240204
## final value 353.567492
## converged
## # weights: 10
## initial value 621.191716
## iter 10 value 342.450344
## iter 20 value 307.748330
## iter 30 value 307.330981
## iter 40 value 306.741327
## iter 50 value 306.511449
## iter 60 value 306.438741
## iter 70 value 306.427718
## final value 306.427704
## converged
## # weights: 16
## initial value 513.709775
## iter 10 value 351.069662
## iter 20 value 311.195720
## iter 30 value 307.475415
## iter 40 value 307.019493
## iter 50 value 306.413446
## iter 60 value 306.208721
## iter 70 value 306.087428
## iter 80 value 306.029380
## iter 90 value 306.001268
## iter 100 value 305.995624
## final value 305.995624
## stopped after 100 iterations
## # weights: 4
## initial value 715.088825
## final value 353.451711
## converged
## # weights: 10
## initial value 630.036088
## iter 10 value 339.592779
## iter 20 value 303.183874
## iter 30 value 302.081966
## iter 40 value 300.779738
## iter 50 value 300.449084
## iter 60 value 300.236308
## iter 70 value 300.184846
## iter 80 value 300.161184
## iter 90 value 300.110076
## iter 100 value 299.804829
## final value 299.804829
## stopped after 100 iterations
## # weights: 16
## initial value 634.238876
## iter 10 value 353.361389
## iter 20 value 330.973127
## iter 30 value 302.985755
## iter 40 value 301.414288
## iter 50 value 300.890837
## iter 60 value 300.818109
## iter 70 value 300.695126
## iter 80 value 300.584610
## iter 90 value 300.486116
## iter 100 value 300.391581
## final value 300.391581
## stopped after 100 iterations
## # weights: 4
## initial value 556.051016
## final value 351.835016
## converged
## # weights: 10
## initial value 669.974785
## iter 10 value 351.835288
## final value 351.835024
## converged
## # weights: 16
## initial value 467.162877
## iter 10 value 346.426961
## iter 20 value 305.418602
## iter 30 value 304.996421
## iter 40 value 304.905308
## iter 50 value 304.870251
## iter 60 value 304.859616
## iter 70 value 304.832417
## iter 80 value 304.824734
## iter 90 value 304.822090
## iter 100 value 304.810931
## final value 304.810931
## stopped after 100 iterations
## # weights: 4
## initial value 448.851907
## iter 10 value 356.737346
## iter 20 value 349.196965
## iter 30 value 309.726826
## iter 40 value 309.271579
## iter 40 value 309.271579
## iter 40 value 309.271579
## final value 309.271579
## converged
## # weights: 10
## initial value 545.889729
## iter 10 value 351.493393
## iter 20 value 318.020556
## iter 30 value 308.610013
## iter 40 value 308.378660
## iter 50 value 308.176054
## iter 60 value 308.129756
## iter 70 value 308.126564
## iter 70 value 308.126562
## iter 70 value 308.126562
## final value 308.126562
## converged
## # weights: 16
## initial value 426.522466
## iter 10 value 337.782517
## iter 20 value 309.408050
## iter 30 value 308.734244
## iter 40 value 308.364161
## iter 50 value 308.114087
## iter 60 value 307.850713
## iter 70 value 307.749382
## iter 80 value 307.730461
## final value 307.727190
## converged
## # weights: 4
## initial value 425.395731
## iter 10 value 351.835195
## iter 10 value 351.835194
## final value 351.835194
## converged
## # weights: 10
## initial value 374.036082
## iter 10 value 351.769782
## iter 20 value 313.179759
## iter 30 value 305.225837
## iter 40 value 304.954453
## iter 50 value 304.921407
## iter 60 value 304.908131
## iter 70 value 304.834127
## iter 80 value 304.468721
## iter 90 value 303.894177
## iter 100 value 303.693736
## final value 303.693736
## stopped after 100 iterations
## # weights: 16
## initial value 488.115143
## iter 10 value 351.835495
## final value 351.835450
## converged
## # weights: 4
## initial value 500.379879
## final value 351.835074
## converged
## # weights: 10
## initial value 569.394565
## iter 10 value 343.630482
## iter 20 value 308.255270
## iter 30 value 307.328895
## iter 40 value 306.849588
## iter 50 value 306.697873
## iter 60 value 306.662450
## iter 70 value 306.652741
## iter 80 value 306.631714
## iter 90 value 306.625373
## iter 100 value 306.616159
## final value 306.616159
## stopped after 100 iterations
## # weights: 16
## initial value 706.893258
## iter 10 value 351.835130
## final value 351.835019
## converged
## # weights: 4
## initial value 372.039499
## final value 351.951541
## converged
## # weights: 10
## initial value 440.028579
## iter 10 value 351.111267
## iter 20 value 311.950256
## iter 30 value 310.762636
## iter 40 value 310.354142
## iter 50 value 310.068098
## iter 60 value 309.969685
## iter 70 value 309.935107
## final value 309.934888
## converged
## # weights: 16
## initial value 456.544714
## iter 10 value 351.988231
## iter 20 value 351.814601
## iter 30 value 340.395999
## iter 40 value 311.533301
## iter 50 value 310.724147
## iter 60 value 310.533319
## iter 70 value 310.282617
## iter 80 value 310.149304
## iter 90 value 310.028739
## iter 100 value 309.822601
## final value 309.822601
## stopped after 100 iterations
## # weights: 4
## initial value 357.412562
## final value 351.835214
## converged
## # weights: 10
## initial value 437.727094
## iter 10 value 351.837108
## final value 351.837051
## converged
## # weights: 16
## initial value 660.029678
## iter 10 value 351.714369
## iter 20 value 320.415723
## iter 30 value 307.718896
## iter 40 value 306.913139
## iter 50 value 306.749357
## iter 60 value 306.695229
## iter 70 value 306.663556
## iter 80 value 306.518679
## iter 90 value 305.807867
## iter 100 value 305.599204
## final value 305.599204
## stopped after 100 iterations
## # weights: 4
## initial value 433.746950
## final value 351.835016
## converged
## # weights: 10
## initial value 375.755712
## iter 10 value 349.636218
## iter 20 value 306.255832
## iter 30 value 305.760753
## iter 40 value 305.680580
## iter 50 value 305.660794
## iter 60 value 305.632502
## iter 70 value 305.613221
## iter 80 value 305.609636
## iter 90 value 305.590665
## iter 100 value 305.586797
## final value 305.586797
## stopped after 100 iterations
## # weights: 16
## initial value 632.551091
## iter 10 value 351.833400
## iter 20 value 307.108834
## iter 30 value 306.115833
## iter 40 value 305.859852
## iter 50 value 305.722029
## iter 60 value 305.667120
## iter 70 value 305.636352
## iter 80 value 305.626189
## iter 90 value 305.604228
## iter 100 value 305.593241
## final value 305.593241
## stopped after 100 iterations
## # weights: 4
## initial value 513.522011
## iter 10 value 355.189455
## iter 20 value 329.462160
## iter 30 value 310.127217
## final value 309.880033
## converged
## # weights: 10
## initial value 677.202173
## iter 10 value 346.506336
## iter 20 value 311.693268
## iter 30 value 309.850382
## iter 40 value 309.551403
## iter 50 value 309.077242
## iter 60 value 308.880460
## iter 70 value 308.821269
## iter 80 value 308.819794
## final value 308.819776
## converged
## # weights: 16
## initial value 361.925453
## iter 10 value 345.251700
## iter 20 value 310.201885
## iter 30 value 309.585946
## iter 40 value 308.948524
## iter 50 value 308.711482
## iter 60 value 308.531155
## iter 70 value 308.454365
## iter 80 value 308.436402
## final value 308.436155
## converged
## # weights: 4
## initial value 600.694253
## final value 351.835211
## converged
## # weights: 10
## initial value 400.779087
## iter 10 value 349.842025
## iter 20 value 306.893835
## iter 30 value 305.820048
## iter 40 value 305.754383
## iter 50 value 305.691566
## iter 60 value 305.674258
## iter 70 value 305.667588
## iter 80 value 305.663099
## iter 90 value 305.660620
## final value 305.659769
## converged
## # weights: 16
## initial value 444.049417
## iter 10 value 349.834325
## iter 20 value 306.065821
## iter 30 value 305.608443
## iter 40 value 304.991782
## iter 50 value 304.759212
## iter 60 value 304.523256
## iter 70 value 304.282218
## iter 80 value 303.747221
## iter 90 value 303.211221
## iter 100 value 303.130552
## final value 303.130552
## stopped after 100 iterations
## # weights: 4
## initial value 544.199775
## final value 353.451549
## converged
## # weights: 10
## initial value 589.795128
## final value 353.451488
## converged
## # weights: 16
## initial value 526.031517
## iter 10 value 299.038719
## iter 20 value 296.182858
## iter 30 value 296.095955
## iter 40 value 296.006233
## iter 50 value 295.963361
## iter 60 value 295.767620
## iter 70 value 294.887238
## iter 80 value 294.741500
## iter 90 value 294.584747
## iter 100 value 294.512474
## final value 294.512474
## stopped after 100 iterations
## # weights: 4
## initial value 561.243033
## final value 353.567360
## converged
## # weights: 10
## initial value 424.675619
## iter 10 value 313.735947
## iter 20 value 302.791683
## iter 30 value 302.024203
## iter 40 value 301.704574
## iter 50 value 301.557462
## final value 301.550764
## converged
## # weights: 16
## initial value 623.562437
## iter 10 value 340.343621
## iter 20 value 304.801451
## iter 30 value 302.069469
## iter 40 value 301.752725
## iter 50 value 301.490352
## iter 60 value 301.262390
## iter 70 value 301.111788
## iter 80 value 300.981069
## iter 90 value 300.941152
## final value 300.938213
## converged
## # weights: 4
## initial value 455.359405
## iter 10 value 353.451825
## iter 10 value 353.451825
## final value 353.451825
## converged
## # weights: 10
## initial value 417.962640
## final value 353.452009
## converged
## # weights: 16
## initial value 673.212405
## iter 10 value 353.452629
## final value 353.452539
## converged
## # weights: 4
## initial value 550.307036
## final value 351.835016
## converged
## # weights: 10
## initial value 411.845797
## iter 10 value 320.975863
## iter 20 value 309.587391
## iter 30 value 309.360971
## iter 40 value 309.284392
## iter 50 value 309.260147
## iter 60 value 309.247369
## final value 309.246471
## converged
## # weights: 16
## initial value 613.526235
## iter 10 value 351.023452
## iter 20 value 343.735996
## iter 30 value 310.823477
## iter 40 value 309.547852
## iter 50 value 309.431667
## iter 60 value 309.314347
## iter 70 value 309.271631
## iter 80 value 309.248750
## iter 90 value 309.234529
## iter 100 value 309.220113
## final value 309.220113
## stopped after 100 iterations
## # weights: 4
## initial value 467.045367
## iter 10 value 339.781426
## iter 20 value 313.465939
## final value 313.463634
## converged
## # weights: 10
## initial value 525.491254
## iter 10 value 348.539981
## iter 20 value 313.643560
## iter 30 value 313.123551
## iter 40 value 312.622822
## iter 50 value 312.416532
## iter 60 value 312.360376
## iter 70 value 312.359392
## iter 70 value 312.359389
## iter 70 value 312.359389
## final value 312.359389
## converged
## # weights: 16
## initial value 391.280538
## iter 10 value 316.695505
## iter 20 value 313.125316
## iter 30 value 312.448786
## iter 40 value 312.340877
## iter 50 value 312.324248
## final value 312.324243
## converged
## # weights: 4
## initial value 638.269289
## final value 351.835205
## converged
## # weights: 10
## initial value 544.771426
## iter 10 value 346.037286
## iter 20 value 310.343265
## iter 30 value 309.345606
## iter 40 value 309.027682
## iter 50 value 308.325922
## iter 60 value 308.085317
## iter 70 value 307.678439
## iter 80 value 307.302465
## iter 90 value 307.025546
## iter 100 value 306.998781
## final value 306.998781
## stopped after 100 iterations
## # weights: 16
## initial value 575.193288
## iter 10 value 349.570838
## iter 20 value 311.667557
## iter 30 value 308.665983
## iter 40 value 307.249160
## iter 50 value 307.131673
## iter 60 value 307.085677
## iter 70 value 307.061173
## iter 80 value 307.058238
## iter 80 value 307.058237
## iter 80 value 307.058236
## final value 307.058236
## converged
## # weights: 4
## initial value 537.091244
## iter 10 value 351.835034
## iter 10 value 351.835034
## final value 351.835034
## converged
## # weights: 10
## initial value 468.607075
## iter 10 value 351.835053
## final value 351.835016
## converged
## # weights: 16
## initial value 563.974410
## iter 10 value 320.045976
## iter 20 value 310.424026
## iter 30 value 309.359656
## iter 40 value 309.267505
## final value 309.258440
## converged
## # weights: 4
## initial value 421.995775
## iter 10 value 348.423165
## iter 20 value 312.852317
## iter 20 value 312.852317
## final value 312.852317
## converged
## # weights: 10
## initial value 499.633253
## iter 10 value 352.649705
## iter 20 value 320.112725
## iter 30 value 312.785304
## iter 40 value 312.436438
## iter 50 value 312.129458
## iter 60 value 311.902783
## iter 70 value 311.853995
## iter 80 value 311.847985
## final value 311.847942
## converged
## # weights: 16
## initial value 392.445851
## iter 10 value 351.942800
## final value 351.942535
## converged
## # weights: 4
## initial value 835.660226
## final value 351.841377
## converged
## # weights: 10
## initial value 519.694063
## iter 10 value 351.835498
## final value 351.835480
## converged
## # weights: 16
## initial value 353.738695
## iter 10 value 347.185911
## iter 20 value 310.707135
## iter 30 value 309.340732
## iter 40 value 309.237420
## iter 50 value 309.026744
## iter 60 value 308.962981
## iter 70 value 308.894309
## iter 80 value 308.713313
## iter 90 value 308.310260
## iter 100 value 308.141126
## final value 308.141126
## stopped after 100 iterations
## # weights: 4
## initial value 633.435514
## final value 351.835013
## converged
## # weights: 10
## initial value 417.602616
## iter 10 value 351.835065
## final value 351.835026
## converged
## # weights: 16
## initial value 548.705463
## iter 10 value 346.056867
## iter 20 value 303.719575
## iter 30 value 303.611876
## iter 40 value 303.600718
## iter 50 value 303.482270
## iter 60 value 303.433295
## iter 70 value 303.299933
## iter 80 value 303.068268
## iter 90 value 302.962541
## iter 100 value 302.905590
## final value 302.905590
## stopped after 100 iterations
## # weights: 4
## initial value 550.958898
## iter 10 value 351.208643
## iter 20 value 311.087343
## iter 30 value 307.745766
## final value 307.744485
## converged
## # weights: 10
## initial value 552.244000
## iter 10 value 350.512648
## iter 20 value 309.520673
## iter 30 value 307.648303
## iter 40 value 307.062672
## iter 50 value 306.790910
## iter 60 value 306.714229
## iter 70 value 306.711827
## final value 306.711823
## converged
## # weights: 16
## initial value 658.100357
## iter 10 value 346.948275
## iter 20 value 308.792495
## iter 30 value 307.410887
## iter 40 value 307.195050
## iter 50 value 306.802553
## iter 60 value 306.574415
## iter 70 value 306.420073
## iter 80 value 306.392145
## final value 306.390074
## converged
## # weights: 4
## initial value 429.103541
## iter 10 value 337.093617
## iter 20 value 303.938013
## iter 30 value 303.620255
## iter 40 value 303.553726
## iter 50 value 303.512862
## iter 60 value 303.504412
## iter 70 value 303.486987
## final value 303.485580
## converged
## # weights: 10
## initial value 352.635591
## iter 10 value 351.835442
## final value 351.835432
## converged
## # weights: 16
## initial value 460.870528
## iter 10 value 342.757246
## iter 20 value 304.415927
## iter 30 value 303.508837
## iter 40 value 303.502399
## iter 50 value 303.486789
## iter 60 value 303.468655
## iter 70 value 303.463575
## final value 303.462213
## converged
## # weights: 4
## initial value 549.857138
## iter 10 value 315.332767
## iter 20 value 307.394175
## iter 30 value 306.899686
## iter 40 value 306.726998
## iter 50 value 306.653980
## iter 60 value 306.621407
## iter 70 value 306.612141
## iter 80 value 306.603818
## iter 90 value 306.595906
## iter 100 value 306.589028
## final value 306.589028
## stopped after 100 iterations
## # weights: 10
## initial value 564.251024
## iter 10 value 310.585709
## iter 20 value 307.113000
## final value 306.937516
## converged
## # weights: 16
## initial value 562.611655
## iter 10 value 353.451583
## final value 353.451552
## converged
## # weights: 4
## initial value 668.168774
## iter 10 value 353.682282
## iter 20 value 316.265947
## iter 30 value 311.079502
## final value 311.043775
## converged
## # weights: 10
## initial value 580.512810
## iter 10 value 352.258690
## iter 20 value 313.551520
## iter 30 value 311.188193
## iter 40 value 310.928025
## iter 50 value 310.557609
## iter 60 value 310.425801
## iter 70 value 310.392261
## final value 310.391622
## converged
## # weights: 16
## initial value 485.637656
## iter 10 value 354.821143
## iter 20 value 311.274778
## iter 30 value 310.399108
## iter 40 value 309.939478
## iter 50 value 309.605788
## iter 60 value 309.416969
## iter 70 value 309.353279
## iter 80 value 309.341243
## final value 309.341210
## converged
## # weights: 4
## initial value 432.247766
## iter 10 value 313.357778
## iter 20 value 307.521632
## iter 30 value 306.853676
## iter 40 value 306.745454
## iter 40 value 306.745452
## final value 306.745452
## converged
## # weights: 10
## initial value 579.844669
## iter 10 value 353.451508
## iter 20 value 352.671304
## iter 30 value 327.222384
## iter 40 value 307.042410
## iter 50 value 306.709095
## iter 60 value 306.654437
## iter 70 value 306.634624
## iter 70 value 306.634622
## iter 70 value 306.634620
## final value 306.634620
## converged
## # weights: 16
## initial value 467.387533
## iter 10 value 353.451890
## iter 20 value 350.989956
## iter 30 value 308.535701
## iter 40 value 306.994525
## iter 50 value 306.774789
## iter 60 value 306.685264
## iter 70 value 306.660483
## iter 80 value 306.626117
## final value 306.625360
## converged
## # weights: 4
## initial value 618.987859
## iter 10 value 352.505238
## iter 20 value 304.572124
## iter 30 value 303.838271
## iter 40 value 303.608063
## iter 50 value 303.452502
## iter 60 value 303.417006
## iter 70 value 303.385765
## iter 80 value 303.365397
## iter 90 value 303.357412
## iter 100 value 303.349373
## final value 303.349373
## stopped after 100 iterations
## # weights: 10
## initial value 440.592621
## final value 353.451606
## converged
## # weights: 16
## initial value 452.792068
## iter 10 value 352.308332
## iter 20 value 304.275013
## iter 30 value 303.474195
## iter 40 value 303.343349
## iter 50 value 303.341128
## iter 60 value 303.328180
## iter 70 value 303.321093
## final value 303.320513
## converged
## # weights: 4
## initial value 531.040069
## final value 353.567177
## converged
## # weights: 10
## initial value 430.286634
## iter 10 value 314.008579
## iter 20 value 308.247181
## iter 30 value 307.367110
## iter 40 value 307.069147
## iter 50 value 306.881634
## iter 60 value 306.834166
## iter 60 value 306.834166
## final value 306.834166
## converged
## # weights: 16
## initial value 358.084909
## iter 10 value 311.401423
## iter 20 value 308.044475
## iter 30 value 307.234349
## iter 40 value 306.825957
## iter 50 value 306.661989
## iter 60 value 306.530346
## iter 70 value 306.502536
## final value 306.499125
## converged
## # weights: 4
## initial value 448.210226
## iter 10 value 353.451832
## iter 10 value 353.451832
## final value 353.451832
## converged
## # weights: 10
## initial value 451.709267
## iter 10 value 353.451899
## final value 353.451848
## converged
## # weights: 16
## initial value 1011.993685
## iter 10 value 353.454410
## final value 353.454361
## converged
## # weights: 4
## initial value 520.646908
## iter 10 value 353.451575
## iter 10 value 353.451575
## final value 353.451575
## converged
## # weights: 10
## initial value 601.708309
## final value 353.451617
## converged
## # weights: 16
## initial value 356.827438
## iter 10 value 350.318015
## iter 20 value 306.992304
## iter 30 value 305.712719
## iter 40 value 305.285878
## iter 50 value 304.254268
## iter 60 value 303.369960
## iter 70 value 301.017781
## iter 80 value 300.338733
## iter 90 value 300.253195
## iter 100 value 300.120170
## final value 300.120170
## stopped after 100 iterations
## # weights: 4
## initial value 631.848443
## iter 10 value 352.411376
## iter 20 value 312.906587
## iter 30 value 310.015491
## iter 30 value 310.015489
## iter 30 value 310.015489
## final value 310.015489
## converged
## # weights: 10
## initial value 404.202424
## iter 10 value 348.565715
## iter 20 value 309.993781
## iter 30 value 309.283085
## iter 40 value 308.951931
## iter 50 value 308.750093
## iter 60 value 308.689650
## final value 308.685771
## converged
## # weights: 16
## initial value 410.513863
## iter 10 value 353.622657
## iter 20 value 353.608774
## iter 30 value 323.146738
## iter 40 value 313.381974
## iter 50 value 310.754703
## iter 60 value 310.422593
## iter 70 value 310.372501
## iter 80 value 309.347546
## iter 90 value 309.228701
## iter 100 value 309.217659
## final value 309.217659
## stopped after 100 iterations
## # weights: 4
## initial value 680.857005
## final value 353.455555
## converged
## # weights: 10
## initial value 421.440960
## final value 353.452003
## converged
## # weights: 16
## initial value 370.327494
## iter 10 value 328.999279
## iter 20 value 305.500850
## iter 30 value 304.361446
## final value 304.169256
## converged
## # weights: 4
## initial value 519.485521
## iter 10 value 351.835041
## iter 10 value 351.835041
## final value 351.835041
## converged
## # weights: 10
## initial value 532.446564
## final value 351.835063
## converged
## # weights: 16
## initial value 407.292586
## final value 351.834962
## converged
## # weights: 4
## initial value 649.075072
## iter 10 value 350.807430
## iter 20 value 312.841971
## final value 312.377730
## converged
## # weights: 10
## initial value 356.653205
## iter 10 value 324.242643
## iter 20 value 313.954065
## iter 30 value 312.434630
## iter 40 value 312.199369
## iter 50 value 311.981693
## iter 60 value 311.919681
## iter 70 value 311.867995
## iter 80 value 311.582613
## iter 90 value 311.374533
## iter 100 value 311.324070
## final value 311.324070
## stopped after 100 iterations
## # weights: 16
## initial value 709.334830
## iter 10 value 317.689816
## iter 20 value 312.414233
## iter 30 value 312.113421
## iter 40 value 311.599477
## iter 50 value 311.396872
## iter 60 value 311.234208
## iter 70 value 311.207567
## final value 311.205858
## converged
## # weights: 4
## initial value 494.770352
## final value 351.836846
## converged
## # weights: 10
## initial value 575.948252
## iter 10 value 351.835355
## final value 351.835346
## converged
## # weights: 16
## initial value 520.003413
## iter 10 value 351.820906
## iter 20 value 310.070927
## iter 30 value 308.382993
## iter 40 value 308.270337
## iter 50 value 308.256153
## iter 60 value 308.255400
## final value 308.253449
## converged
## # weights: 4
## initial value 476.012060
## final value 351.835038
## converged
## # weights: 10
## initial value 630.185711
## iter 10 value 312.304057
## iter 20 value 308.704697
## iter 30 value 308.219334
## iter 40 value 308.074981
## iter 50 value 308.000254
## iter 60 value 307.980228
## iter 70 value 307.955927
## iter 80 value 307.941846
## iter 90 value 307.916202
## iter 100 value 307.911588
## final value 307.911588
## stopped after 100 iterations
## # weights: 16
## initial value 446.001743
## iter 10 value 311.689518
## iter 20 value 308.213244
## iter 30 value 307.513697
## iter 40 value 307.365175
## iter 50 value 307.181844
## iter 60 value 307.028144
## iter 70 value 306.891886
## iter 80 value 306.754300
## iter 90 value 306.576767
## iter 100 value 305.309646
## final value 305.309646
## stopped after 100 iterations
## # weights: 4
## initial value 555.459866
## iter 10 value 334.496442
## iter 20 value 312.091657
## final value 312.064622
## converged
## # weights: 10
## initial value 551.237080
## iter 10 value 351.442756
## iter 20 value 314.788764
## iter 30 value 312.705617
## final value 312.694604
## converged
## # weights: 16
## initial value 479.507094
## iter 10 value 343.618989
## iter 20 value 312.396802
## iter 30 value 311.598869
## iter 40 value 311.141415
## iter 50 value 310.913972
## iter 60 value 310.739839
## iter 70 value 310.690897
## iter 80 value 310.682764
## iter 90 value 310.680930
## final value 310.680914
## converged
## # weights: 4
## initial value 580.387495
## iter 10 value 351.835290
## iter 10 value 351.835290
## final value 351.835290
## converged
## # weights: 10
## initial value 408.911835
## final value 351.835419
## converged
## # weights: 16
## initial value 453.832021
## iter 10 value 330.010523
## iter 20 value 308.888178
## iter 30 value 308.216615
## iter 40 value 308.138071
## iter 50 value 308.025596
## iter 60 value 307.985820
## iter 70 value 307.405635
## iter 80 value 307.327306
## iter 90 value 307.135959
## iter 100 value 306.970206
## final value 306.970206
## stopped after 100 iterations
## # weights: 4
## initial value 472.306581
## iter 10 value 351.835035
## iter 10 value 351.835035
## final value 351.835035
## converged
## # weights: 10
## initial value 648.298634
## iter 10 value 348.583168
## iter 20 value 302.296313
## iter 30 value 301.898048
## iter 40 value 301.480933
## iter 50 value 301.283189
## final value 301.174317
## converged
## # weights: 16
## initial value 558.656167
## iter 10 value 330.311161
## iter 20 value 302.413294
## iter 30 value 301.771952
## iter 40 value 301.736681
## iter 50 value 301.643414
## iter 60 value 301.607807
## iter 70 value 301.582962
## iter 80 value 301.567115
## iter 90 value 301.559361
## iter 100 value 301.551170
## final value 301.551170
## stopped after 100 iterations
## # weights: 4
## initial value 393.564085
## iter 10 value 352.787146
## iter 20 value 351.955710
## final value 351.951707
## converged
## # weights: 10
## initial value 450.642598
## iter 10 value 351.942968
## iter 20 value 311.033209
## iter 30 value 306.018236
## iter 40 value 305.670055
## iter 50 value 305.561124
## iter 60 value 305.529130
## iter 70 value 305.526758
## iter 80 value 305.526112
## final value 305.525841
## converged
## # weights: 16
## initial value 459.676828
## iter 10 value 351.960192
## iter 20 value 309.779975
## iter 30 value 305.912470
## iter 40 value 305.208510
## iter 50 value 304.877641
## iter 60 value 304.587823
## iter 70 value 304.467297
## iter 80 value 304.416833
## iter 90 value 304.413344
## final value 304.412959
## converged
## # weights: 4
## initial value 438.765726
## final value 351.835472
## converged
## # weights: 10
## initial value 386.967198
## iter 10 value 351.737243
## iter 20 value 303.469182
## iter 30 value 301.664702
## iter 40 value 301.627335
## iter 50 value 301.623809
## final value 301.623753
## converged
## # weights: 16
## initial value 395.662966
## iter 10 value 335.915617
## iter 20 value 303.149516
## iter 30 value 301.385410
## iter 40 value 301.031300
## iter 50 value 300.829256
## iter 60 value 300.750533
## iter 70 value 300.730784
## iter 80 value 300.712353
## iter 90 value 300.676913
## iter 100 value 300.668316
## final value 300.668316
## stopped after 100 iterations
## # weights: 4
## initial value 671.694802
## final value 351.835016
## converged
## # weights: 10
## initial value 403.725190
## iter 10 value 351.835062
## final value 351.835023
## converged
## # weights: 16
## initial value 768.886325
## iter 10 value 341.917517
## iter 20 value 303.186450
## iter 30 value 302.018825
## iter 40 value 301.692485
## iter 50 value 301.621807
## iter 60 value 301.586480
## iter 70 value 301.557323
## final value 301.548803
## converged
## # weights: 4
## initial value 482.346870
## iter 10 value 353.705389
## iter 20 value 351.972626
## final value 351.951819
## converged
## # weights: 10
## initial value 512.847756
## iter 10 value 352.179986
## iter 20 value 344.533520
## iter 30 value 306.385500
## iter 40 value 306.132555
## iter 50 value 305.828696
## iter 60 value 305.353960
## iter 70 value 305.092836
## iter 80 value 304.983595
## iter 90 value 304.977419
## final value 304.977371
## converged
## # weights: 16
## initial value 370.499046
## iter 10 value 318.403193
## iter 20 value 306.447406
## iter 30 value 305.851084
## iter 40 value 305.594372
## iter 50 value 305.185715
## iter 60 value 304.733285
## iter 70 value 304.515761
## iter 80 value 304.455770
## iter 90 value 304.427641
## final value 304.426364
## converged
## # weights: 4
## initial value 669.033498
## final value 351.835219
## converged
## # weights: 10
## initial value 394.057012
## iter 10 value 323.475623
## iter 20 value 302.496364
## iter 30 value 301.005332
## iter 40 value 300.739362
## iter 50 value 300.494332
## iter 60 value 300.281027
## iter 70 value 300.244744
## iter 80 value 300.180354
## iter 90 value 299.994594
## iter 100 value 299.894824
## final value 299.894824
## stopped after 100 iterations
## # weights: 16
## initial value 463.834577
## iter 10 value 320.509389
## iter 20 value 303.201908
## iter 30 value 301.703886
## final value 301.681644
## converged
## # weights: 4
## initial value 416.191491
## final value 353.451549
## converged
## # weights: 10
## initial value 374.570303
## iter 10 value 353.451561
## final value 353.451546
## converged
## # weights: 16
## initial value 605.152310
## iter 10 value 353.447860
## iter 20 value 351.112845
## iter 30 value 311.335662
## iter 40 value 303.536134
## iter 50 value 303.342783
## final value 303.336459
## converged
## # weights: 4
## initial value 388.515365
## iter 10 value 354.022433
## iter 20 value 353.569956
## final value 353.567332
## converged
## # weights: 10
## initial value 395.809460
## iter 10 value 338.037871
## iter 20 value 309.353000
## iter 30 value 308.435472
## iter 40 value 307.573027
## iter 50 value 307.275092
## iter 60 value 307.240950
## final value 307.240532
## converged
## # weights: 16
## initial value 377.906624
## iter 10 value 320.222116
## iter 20 value 308.155414
## iter 30 value 307.519060
## iter 40 value 306.920305
## iter 50 value 306.674769
## iter 60 value 306.593458
## iter 70 value 306.567642
## final value 306.567512
## converged
## # weights: 4
## initial value 448.376682
## iter 10 value 353.429121
## iter 20 value 304.410989
## iter 30 value 303.592051
## iter 40 value 303.383493
## iter 50 value 303.329606
## iter 60 value 303.307795
## iter 70 value 303.298298
## iter 80 value 303.282814
## iter 90 value 303.276961
## iter 100 value 303.269288
## final value 303.269288
## stopped after 100 iterations
## # weights: 10
## initial value 624.047854
## iter 10 value 311.834440
## iter 20 value 303.690886
## iter 30 value 303.489120
## iter 40 value 302.629281
## iter 50 value 302.198654
## iter 60 value 301.899293
## iter 70 value 301.580223
## iter 80 value 299.892001
## iter 90 value 299.511282
## iter 100 value 299.443087
## final value 299.443087
## stopped after 100 iterations
## # weights: 16
## initial value 627.423989
## iter 10 value 327.692102
## iter 20 value 303.528641
## iter 30 value 303.265150
## final value 303.264137
## converged
## # weights: 4
## initial value 573.330632
## final value 351.835016
## converged
## # weights: 10
## initial value 560.847149
## final value 351.834770
## converged
## # weights: 16
## initial value 581.701327
## iter 10 value 332.465826
## iter 20 value 302.286343
## iter 30 value 300.362481
## iter 40 value 299.817071
## iter 50 value 299.746700
## iter 60 value 299.704304
## iter 70 value 299.648022
## iter 80 value 299.122448
## iter 90 value 297.570215
## iter 100 value 297.431442
## final value 297.431442
## stopped after 100 iterations
## # weights: 4
## initial value 495.517536
## iter 10 value 352.031924
## iter 20 value 326.470363
## iter 30 value 306.448365
## final value 306.392351
## converged
## # weights: 10
## initial value 603.008454
## iter 10 value 353.709892
## iter 20 value 307.304721
## iter 30 value 304.713533
## iter 40 value 304.290211
## iter 50 value 303.888443
## iter 60 value 303.669925
## iter 70 value 303.532000
## iter 80 value 303.520802
## final value 303.520222
## converged
## # weights: 16
## initial value 508.503354
## iter 10 value 347.231203
## iter 20 value 311.684065
## iter 30 value 304.804946
## iter 40 value 304.571109
## iter 50 value 304.141829
## iter 60 value 303.946821
## iter 70 value 303.833173
## iter 80 value 303.811223
## iter 90 value 303.805398
## final value 303.805371
## converged
## # weights: 4
## initial value 440.176371
## final value 351.835339
## converged
## # weights: 10
## initial value 476.547937
## iter 10 value 338.058900
## iter 20 value 300.160449
## iter 30 value 299.798263
## iter 40 value 299.125851
## iter 50 value 297.309556
## iter 60 value 297.172580
## iter 70 value 296.825997
## iter 80 value 296.613941
## iter 90 value 296.603067
## iter 100 value 296.599667
## final value 296.599667
## stopped after 100 iterations
## # weights: 16
## initial value 416.859071
## iter 10 value 348.933118
## iter 20 value 300.609620
## iter 30 value 299.846127
## iter 40 value 299.774473
## iter 50 value 299.756892
## iter 60 value 299.746303
## final value 299.746298
## converged
## # weights: 4
## initial value 396.240889
## iter 10 value 353.451562
## iter 10 value 353.451562
## final value 353.451562
## converged
## # weights: 10
## initial value 612.196447
## iter 10 value 315.171119
## iter 20 value 309.191216
## iter 30 value 308.898680
## iter 40 value 308.840321
## iter 50 value 308.777608
## iter 60 value 308.749764
## iter 70 value 308.354595
## iter 80 value 307.829772
## iter 90 value 307.697481
## iter 100 value 307.568352
## final value 307.568352
## stopped after 100 iterations
## # weights: 16
## initial value 913.184757
## iter 10 value 353.451594
## final value 353.451557
## converged
## # weights: 4
## initial value 613.582754
## iter 10 value 351.936267
## iter 20 value 313.649806
## final value 313.078090
## converged
## # weights: 10
## initial value 378.230031
## iter 10 value 319.884803
## iter 20 value 313.048963
## iter 30 value 312.840677
## iter 40 value 312.527633
## iter 50 value 312.468491
## final value 312.465422
## converged
## # weights: 16
## initial value 845.110029
## iter 10 value 353.623753
## iter 20 value 313.184635
## iter 30 value 312.673115
## iter 40 value 312.362052
## iter 50 value 312.243205
## iter 60 value 312.238250
## final value 312.238135
## converged
## # weights: 4
## initial value 487.101862
## iter 10 value 353.451841
## iter 10 value 353.451841
## final value 353.451841
## converged
## # weights: 10
## initial value 373.839703
## iter 10 value 353.451172
## iter 20 value 340.277907
## iter 30 value 310.118631
## iter 40 value 309.158773
## iter 50 value 308.943865
## iter 60 value 308.890487
## iter 70 value 308.835206
## iter 80 value 308.810690
## iter 90 value 308.808728
## iter 100 value 308.802856
## final value 308.802856
## stopped after 100 iterations
## # weights: 16
## initial value 535.868261
## iter 10 value 321.495383
## iter 20 value 309.274494
## iter 30 value 308.805026
## iter 40 value 308.803262
## final value 308.802802
## converged
## # weights: 4
## initial value 626.020490
## final value 353.451549
## converged
## # weights: 10
## initial value 459.242091
## iter 10 value 353.451923
## final value 353.451795
## converged
## # weights: 16
## initial value 403.167247
## iter 10 value 316.562878
## iter 20 value 307.561091
## iter 30 value 307.281114
## iter 40 value 307.178959
## iter 50 value 306.838306
## iter 60 value 306.706661
## iter 70 value 306.651914
## iter 80 value 306.599404
## iter 90 value 306.523524
## iter 100 value 306.089616
## final value 306.089616
## stopped after 100 iterations
## # weights: 4
## initial value 504.364736
## iter 10 value 355.455366
## iter 20 value 353.596694
## final value 353.567151
## converged
## # weights: 10
## initial value 491.230961
## iter 10 value 353.366706
## iter 20 value 313.067911
## iter 30 value 312.103047
## iter 30 value 312.103046
## iter 30 value 312.103046
## final value 312.103046
## converged
## # weights: 16
## initial value 474.470631
## iter 10 value 353.498422
## iter 20 value 315.853080
## iter 30 value 311.316269
## iter 40 value 310.749749
## iter 50 value 310.529925
## iter 60 value 310.249146
## iter 70 value 310.147747
## iter 80 value 310.116087
## iter 90 value 310.113989
## final value 310.113766
## converged
## # weights: 4
## initial value 386.180207
## final value 353.451828
## converged
## # weights: 10
## initial value 367.259817
## final value 353.452686
## converged
## # weights: 16
## initial value 571.352386
## iter 10 value 351.439171
## iter 20 value 308.767073
## iter 30 value 307.466687
## iter 40 value 307.435919
## iter 50 value 307.386052
## iter 60 value 307.352360
## iter 70 value 307.339650
## final value 307.338680
## converged
## # weights: 4
## initial value 404.808318
## iter 10 value 307.961896
## iter 20 value 305.628562
## iter 30 value 305.302861
## iter 40 value 305.191740
## iter 50 value 305.132134
## iter 60 value 305.112107
## iter 70 value 305.081716
## iter 80 value 305.073163
## iter 90 value 305.065689
## iter 100 value 305.055819
## final value 305.055819
## stopped after 100 iterations
## # weights: 10
## initial value 651.633573
## final value 351.835219
## converged
## # weights: 16
## initial value 391.121484
## iter 10 value 351.835243
## final value 351.834753
## converged
## # weights: 4
## initial value 402.948486
## iter 10 value 352.170952
## iter 20 value 347.952902
## iter 30 value 311.100190
## iter 40 value 309.814457
## final value 309.814379
## converged
## # weights: 10
## initial value 679.660660
## iter 10 value 349.357104
## iter 20 value 310.427110
## iter 30 value 309.462453
## iter 40 value 309.173065
## iter 50 value 309.041268
## iter 60 value 309.030738
## final value 309.030654
## converged
## # weights: 16
## initial value 647.210431
## iter 10 value 347.779469
## iter 20 value 311.639633
## iter 30 value 309.763480
## iter 40 value 309.304896
## iter 50 value 308.852813
## iter 60 value 308.558536
## iter 70 value 308.302581
## iter 80 value 308.138655
## iter 90 value 308.068819
## iter 100 value 308.052695
## final value 308.052695
## stopped after 100 iterations
## # weights: 4
## initial value 363.786612
## final value 351.835250
## converged
## # weights: 10
## initial value 708.485811
## iter 10 value 347.374149
## iter 20 value 306.446785
## iter 30 value 305.485237
## iter 40 value 305.194571
## iter 50 value 305.170825
## iter 60 value 305.145244
## final value 305.124009
## converged
## # weights: 16
## initial value 365.009554
## iter 10 value 331.214019
## iter 20 value 306.632960
## iter 30 value 305.499704
## iter 40 value 305.327791
## iter 50 value 305.223021
## iter 60 value 305.162707
## iter 70 value 305.142651
## iter 80 value 305.140518
## iter 90 value 305.136359
## iter 100 value 305.135672
## final value 305.135672
## stopped after 100 iterations
## # weights: 4
## initial value 652.462846
## final value 353.451547
## converged
## # weights: 10
## initial value 577.038998
## iter 10 value 324.914704
## iter 20 value 308.429622
## iter 30 value 308.172239
## iter 40 value 308.098519
## iter 50 value 308.033999
## iter 60 value 307.430799
## iter 70 value 307.108434
## iter 80 value 306.965177
## iter 90 value 306.809171
## iter 100 value 306.601012
## final value 306.601012
## stopped after 100 iterations
## # weights: 16
## initial value 434.725070
## iter 10 value 351.792625
## iter 20 value 309.613174
## iter 30 value 308.167327
## iter 40 value 308.040521
## iter 50 value 308.018876
## iter 60 value 307.987695
## iter 70 value 307.970316
## iter 80 value 307.952138
## iter 90 value 307.940201
## iter 100 value 307.923592
## final value 307.923592
## stopped after 100 iterations
## # weights: 4
## initial value 431.856003
## iter 10 value 353.567184
## iter 10 value 353.567184
## final value 353.567184
## converged
## # weights: 10
## initial value 959.251881
## iter 10 value 363.363733
## iter 20 value 351.719427
## iter 30 value 342.773067
## iter 40 value 312.290120
## iter 50 value 311.342474
## iter 60 value 311.234258
## iter 70 value 311.200904
## iter 80 value 311.199799
## final value 311.199770
## converged
## # weights: 16
## initial value 465.810597
## iter 10 value 352.588272
## iter 20 value 316.674759
## iter 30 value 311.897142
## iter 40 value 311.402782
## iter 50 value 311.164835
## iter 60 value 311.134104
## iter 70 value 311.130655
## iter 80 value 311.123385
## final value 311.122905
## converged
## # weights: 4
## initial value 429.156837
## final value 353.451805
## converged
## # weights: 10
## initial value 884.555446
## iter 10 value 353.453059
## final value 353.453041
## converged
## # weights: 16
## initial value 553.946686
## final value 353.452386
## converged
## # weights: 4
## initial value 543.149109
## iter 10 value 351.835042
## iter 10 value 351.835042
## final value 351.835042
## converged
## # weights: 10
## initial value 395.599066
## iter 10 value 338.212429
## iter 20 value 303.466566
## iter 30 value 302.332138
## final value 302.331259
## converged
## # weights: 16
## initial value 598.027632
## final value 351.834834
## converged
## # weights: 4
## initial value 384.142741
## final value 351.951616
## converged
## # weights: 10
## initial value 567.966878
## iter 10 value 351.675552
## iter 20 value 327.691495
## iter 30 value 307.025010
## iter 40 value 306.493408
## iter 50 value 305.906100
## iter 60 value 305.688013
## iter 70 value 305.582960
## final value 305.581500
## converged
## # weights: 16
## initial value 733.010491
## iter 10 value 338.909865
## iter 20 value 306.303709
## iter 30 value 305.807163
## iter 40 value 305.540554
## iter 50 value 305.367143
## iter 60 value 305.270432
## iter 70 value 305.198490
## iter 80 value 305.182665
## iter 90 value 305.177677
## final value 305.177132
## converged
## # weights: 4
## initial value 427.297036
## final value 351.835175
## converged
## # weights: 10
## initial value 506.408756
## iter 10 value 315.981541
## iter 20 value 302.879008
## iter 30 value 302.363326
## iter 40 value 302.297243
## final value 302.271879
## converged
## # weights: 16
## initial value 362.253967
## iter 10 value 304.272912
## iter 20 value 302.455467
## iter 30 value 302.241799
## final value 302.236274
## converged
## # weights: 4
## initial value 486.257206
## final value 353.451549
## converged
## # weights: 10
## initial value 817.439310
## iter 10 value 353.460279
## iter 20 value 353.451566
## final value 353.451555
## converged
## # weights: 16
## initial value 494.884781
## iter 10 value 350.497804
## iter 20 value 309.585122
## iter 30 value 305.959056
## iter 40 value 305.846042
## iter 50 value 305.761013
## iter 60 value 305.690232
## iter 70 value 305.653512
## iter 80 value 305.631575
## iter 90 value 305.630430
## iter 100 value 305.614157
## final value 305.614157
## stopped after 100 iterations
## # weights: 4
## initial value 603.078573
## iter 10 value 344.760940
## iter 20 value 312.394328
## iter 30 value 312.219175
## final value 312.219166
## converged
## # weights: 10
## initial value 535.587792
## iter 10 value 356.327035
## iter 20 value 313.131333
## iter 30 value 312.083330
## iter 40 value 311.510967
## iter 50 value 311.345291
## iter 60 value 311.089515
## iter 70 value 311.050667
## iter 80 value 311.042831
## final value 311.042824
## converged
## # weights: 16
## initial value 647.537700
## iter 10 value 334.247102
## iter 20 value 313.835491
## iter 30 value 312.046790
## iter 40 value 311.710220
## iter 50 value 311.205686
## iter 60 value 310.877055
## iter 70 value 310.699970
## iter 80 value 310.664451
## iter 90 value 310.635931
## final value 310.635391
## converged
## # weights: 4
## initial value 524.927048
## final value 353.451757
## converged
## # weights: 10
## initial value 674.633853
## iter 10 value 353.451923
## final value 353.451847
## converged
## # weights: 16
## initial value 362.615358
## iter 10 value 316.012532
## iter 20 value 308.169912
## iter 30 value 307.941049
## iter 40 value 307.860771
## iter 50 value 307.564923
## iter 60 value 306.708072
## iter 70 value 306.570777
## iter 80 value 306.503356
## iter 90 value 306.138855
## iter 100 value 305.891287
## final value 305.891287
## stopped after 100 iterations
## # weights: 4
## initial value 448.766588
## final value 351.834839
## converged
## # weights: 10
## initial value 372.876190
## iter 10 value 351.835028
## final value 351.835010
## converged
## # weights: 16
## initial value 476.150396
## iter 10 value 351.823650
## iter 20 value 315.373518
## iter 30 value 304.529460
## iter 40 value 304.427054
## iter 50 value 304.414179
## iter 60 value 304.409569
## final value 304.409038
## converged
## # weights: 4
## initial value 547.160904
## final value 351.951661
## converged
## # weights: 10
## initial value 546.108760
## iter 10 value 322.371661
## iter 20 value 310.238536
## iter 30 value 308.574345
## iter 40 value 308.147361
## iter 50 value 307.906383
## iter 60 value 307.739418
## iter 70 value 307.721852
## iter 70 value 307.721850
## final value 307.721850
## converged
## # weights: 16
## initial value 472.724239
## iter 10 value 323.204076
## iter 20 value 309.096163
## iter 30 value 308.216122
## iter 40 value 307.850656
## iter 50 value 307.619054
## iter 60 value 307.601546
## iter 70 value 307.599351
## final value 307.599344
## converged
## # weights: 4
## initial value 648.334141
## final value 351.835304
## converged
## # weights: 10
## initial value 370.834571
## iter 10 value 351.835352
## iter 20 value 351.835092
## iter 30 value 341.129385
## iter 40 value 304.990032
## iter 50 value 304.557996
## iter 60 value 304.517626
## iter 70 value 304.474416
## iter 80 value 304.057282
## iter 90 value 303.625069
## iter 100 value 303.416798
## final value 303.416798
## stopped after 100 iterations
## # weights: 16
## initial value 1021.932319
## iter 10 value 351.835380
## iter 20 value 344.596214
## iter 30 value 306.021582
## iter 40 value 304.693620
## iter 50 value 304.545036
## iter 60 value 304.507705
## iter 70 value 304.492708
## iter 80 value 304.489020
## iter 90 value 304.478071
## iter 100 value 304.352216
## final value 304.352216
## stopped after 100 iterations
## # weights: 4
## initial value 476.948937
## final value 351.835009
## converged
## # weights: 10
## initial value 449.525943
## final value 351.835113
## converged
## # weights: 16
## initial value 600.406244
## iter 10 value 351.835106
## final value 351.835020
## converged
## # weights: 4
## initial value 399.068161
## iter 10 value 352.665564
## final value 351.951579
## converged
## # weights: 10
## initial value 584.039959
## iter 10 value 345.405962
## iter 20 value 310.431001
## iter 30 value 309.073075
## iter 40 value 308.960671
## final value 308.955602
## converged
## # weights: 16
## initial value 552.513427
## iter 10 value 349.023074
## iter 20 value 311.917003
## iter 30 value 309.272764
## iter 40 value 308.683686
## iter 50 value 308.337326
## iter 60 value 308.086091
## iter 70 value 307.986431
## iter 80 value 307.963601
## final value 307.962522
## converged
## # weights: 4
## initial value 400.754350
## iter 10 value 351.835193
## iter 10 value 351.835193
## final value 351.835193
## converged
## # weights: 10
## initial value 427.690329
## iter 10 value 350.236320
## iter 20 value 306.211624
## iter 30 value 305.598795
## iter 40 value 305.391642
## iter 50 value 305.361180
## iter 60 value 305.340790
## iter 70 value 305.328904
## iter 80 value 305.328046
## iter 90 value 305.325947
## final value 305.325940
## converged
## # weights: 16
## initial value 610.609447
## iter 10 value 306.176423
## iter 20 value 305.406686
## iter 30 value 305.365114
## final value 305.365096
## converged
## # weights: 4
## initial value 692.084689
## iter 10 value 353.451698
## final value 353.451552
## converged
## # weights: 10
## initial value 768.189327
## iter 10 value 353.451587
## final value 353.451566
## converged
## # weights: 16
## initial value 551.935555
## iter 10 value 353.451743
## final value 353.451564
## converged
## # weights: 4
## initial value 404.724190
## iter 10 value 353.605695
## final value 353.567195
## converged
## # weights: 10
## initial value 444.233260
## iter 10 value 353.099615
## iter 20 value 312.783555
## iter 30 value 311.511282
## iter 40 value 311.055229
## iter 50 value 310.650328
## iter 60 value 310.601601
## final value 310.592980
## converged
## # weights: 16
## initial value 444.666082
## iter 10 value 351.189412
## iter 20 value 315.887164
## iter 30 value 311.922031
## iter 40 value 311.614740
## iter 50 value 311.283104
## iter 60 value 310.895695
## iter 70 value 310.731302
## iter 80 value 310.635749
## iter 90 value 310.625171
## iter 90 value 310.625169
## iter 90 value 310.625169
## final value 310.625169
## converged
## # weights: 4
## initial value 500.287005
## final value 353.452349
## converged
## # weights: 10
## initial value 387.526929
## iter 10 value 315.629280
## iter 20 value 309.177297
## iter 30 value 307.904301
## iter 40 value 307.630977
## iter 50 value 307.573272
## iter 60 value 307.527739
## iter 70 value 307.506204
## iter 80 value 307.497722
## iter 90 value 307.486175
## final value 307.485788
## converged
## # weights: 16
## initial value 432.948062
## iter 10 value 335.858787
## iter 20 value 308.219354
## iter 30 value 307.538941
## final value 307.537044
## converged
## # weights: 4
## initial value 404.346873
## final value 351.835017
## converged
## # weights: 10
## initial value 505.130648
## iter 10 value 310.949878
## iter 20 value 306.854458
## iter 30 value 306.478051
## iter 40 value 306.381316
## iter 50 value 306.323722
## iter 60 value 306.304022
## iter 70 value 306.275378
## iter 80 value 306.268697
## iter 90 value 306.248822
## iter 100 value 306.246554
## final value 306.246554
## stopped after 100 iterations
## # weights: 16
## initial value 648.058184
## iter 10 value 351.835050
## iter 20 value 329.834736
## iter 30 value 306.855374
## iter 40 value 306.448550
## iter 50 value 306.383016
## iter 60 value 306.335405
## iter 70 value 306.283611
## iter 80 value 306.267803
## iter 90 value 306.253268
## iter 100 value 306.250901
## final value 306.250901
## stopped after 100 iterations
## # weights: 4
## initial value 492.480081
## iter 10 value 350.379595
## iter 20 value 311.628218
## final value 310.590311
## converged
## # weights: 10
## initial value 713.530303
## iter 10 value 357.062646
## iter 20 value 312.280336
## iter 30 value 310.673671
## iter 40 value 310.497470
## iter 50 value 310.256171
## iter 60 value 310.089747
## iter 70 value 310.052024
## iter 80 value 310.044412
## iter 90 value 310.041659
## final value 310.041606
## converged
## # weights: 16
## initial value 559.222458
## iter 10 value 350.056271
## iter 20 value 312.678624
## iter 30 value 310.571934
## iter 40 value 309.883878
## iter 50 value 309.521260
## iter 60 value 309.257301
## iter 70 value 309.138230
## iter 80 value 309.095737
## iter 90 value 309.091759
## iter 90 value 309.091757
## iter 90 value 309.091757
## final value 309.091757
## converged
## # weights: 4
## initial value 659.474527
## final value 351.835294
## converged
## # weights: 10
## initial value 356.651676
## iter 10 value 351.835326
## final value 351.835319
## converged
## # weights: 16
## initial value 382.806100
## iter 10 value 341.211297
## iter 20 value 307.293001
## iter 30 value 306.467236
## iter 40 value 306.423052
## iter 50 value 306.369125
## iter 60 value 306.352263
## iter 70 value 306.339645
## iter 80 value 306.334730
## iter 90 value 306.327405
## final value 306.327038
## converged
## # weights: 4
## initial value 537.037647
## iter 10 value 351.835028
## iter 10 value 351.835028
## final value 351.835028
## converged
## # weights: 10
## initial value 588.821220
## iter 10 value 351.826045
## iter 20 value 309.716363
## iter 30 value 308.801860
## iter 40 value 308.723635
## iter 50 value 308.652961
## iter 60 value 308.640252
## iter 70 value 308.632722
## iter 80 value 308.612826
## iter 90 value 308.607194
## iter 100 value 308.597076
## final value 308.597076
## stopped after 100 iterations
## # weights: 16
## initial value 597.675900
## final value 351.835140
## converged
## # weights: 4
## initial value 485.890830
## iter 10 value 351.171921
## iter 20 value 336.760363
## iter 30 value 312.839397
## final value 312.838604
## converged
## # weights: 10
## initial value 518.903459
## iter 10 value 325.168024
## iter 20 value 313.394117
## iter 30 value 312.340546
## iter 40 value 311.934341
## iter 50 value 311.803644
## iter 60 value 311.731155
## final value 311.728129
## converged
## # weights: 16
## initial value 672.743267
## iter 10 value 351.778523
## iter 20 value 337.313341
## iter 30 value 316.330468
## iter 40 value 312.416600
## iter 50 value 312.080969
## iter 60 value 311.818662
## iter 70 value 311.757074
## iter 80 value 311.736341
## final value 311.735727
## converged
## # weights: 4
## initial value 550.279529
## iter 10 value 346.186691
## iter 20 value 310.313884
## iter 30 value 309.099870
## iter 40 value 308.841848
## iter 50 value 308.746192
## iter 60 value 308.715480
## final value 308.710867
## converged
## # weights: 10
## initial value 369.157759
## iter 10 value 351.845362
## iter 20 value 351.842538
## final value 351.836606
## converged
## # weights: 16
## initial value 462.185376
## iter 10 value 351.830235
## iter 20 value 331.837876
## iter 30 value 308.963216
## iter 40 value 308.775891
## iter 50 value 308.769072
## iter 60 value 308.701168
## iter 70 value 308.692978
## iter 80 value 308.679761
## final value 308.676837
## converged
## # weights: 4
## initial value 594.522033
## final value 353.451549
## converged
## # weights: 10
## initial value 364.090495
## iter 10 value 342.131061
## iter 20 value 305.195598
## iter 30 value 302.961090
## iter 40 value 302.751748
## iter 50 value 302.741358
## iter 60 value 302.702580
## iter 70 value 302.670671
## iter 80 value 302.666741
## iter 90 value 302.642439
## iter 100 value 302.640228
## final value 302.640228
## stopped after 100 iterations
## # weights: 16
## initial value 419.666058
## iter 10 value 336.291049
## iter 20 value 320.255655
## iter 30 value 311.994237
## iter 40 value 300.159901
## iter 50 value 299.059316
## iter 60 value 298.693664
## iter 70 value 297.870330
## iter 80 value 297.322704
## iter 90 value 297.214323
## iter 100 value 297.167230
## final value 297.167230
## stopped after 100 iterations
## # weights: 4
## initial value 618.279700
## iter 10 value 353.225091
## iter 20 value 308.093918
## final value 307.729294
## converged
## # weights: 10
## initial value 411.092806
## iter 10 value 353.465461
## iter 20 value 314.821011
## iter 30 value 308.150220
## iter 40 value 307.496994
## iter 50 value 306.954197
## iter 60 value 306.625905
## iter 70 value 306.401383
## iter 80 value 306.349193
## iter 90 value 306.342957
## final value 306.342945
## converged
## # weights: 16
## initial value 410.455146
## iter 10 value 349.670815
## iter 20 value 311.741084
## iter 30 value 307.037995
## iter 40 value 306.355595
## iter 50 value 306.180291
## iter 60 value 305.927778
## iter 70 value 305.889547
## final value 305.880030
## converged
## # weights: 4
## initial value 458.423802
## final value 353.452533
## converged
## # weights: 10
## initial value 585.050283
## final value 353.451540
## converged
## # weights: 16
## initial value 796.579735
## iter 10 value 353.451159
## iter 10 value 353.451157
## final value 353.451157
## converged
## # weights: 4
## initial value 611.643907
## final value 351.835016
## converged
## # weights: 10
## initial value 1105.033238
## final value 351.835032
## converged
## # weights: 16
## initial value 711.732673
## iter 10 value 351.860552
## iter 20 value 345.514677
## iter 30 value 305.143478
## iter 40 value 304.699778
## iter 50 value 304.492949
## iter 60 value 303.693698
## iter 70 value 303.452083
## iter 80 value 303.302036
## iter 90 value 303.252382
## iter 100 value 303.224976
## final value 303.224976
## stopped after 100 iterations
## # weights: 4
## initial value 576.476370
## final value 351.951606
## converged
## # weights: 10
## initial value 428.176573
## iter 10 value 349.449243
## iter 20 value 308.896038
## iter 30 value 308.602189
## iter 40 value 308.392349
## iter 50 value 308.327493
## final value 308.327124
## converged
## # weights: 16
## initial value 535.197788
## iter 10 value 350.664329
## iter 20 value 315.428380
## iter 30 value 308.562271
## iter 40 value 308.284195
## iter 50 value 308.198528
## iter 60 value 307.964047
## iter 70 value 307.587416
## iter 80 value 307.394501
## iter 90 value 307.334929
## iter 100 value 307.284273
## final value 307.284273
## stopped after 100 iterations
## # weights: 4
## initial value 473.622012
## iter 10 value 351.837733
## final value 351.836488
## converged
## # weights: 10
## initial value 487.929980
## iter 10 value 351.837124
## final value 351.835859
## converged
## # weights: 16
## initial value 361.334666
## iter 10 value 318.655461
## iter 20 value 305.430308
## iter 30 value 304.791548
## iter 40 value 304.728725
## iter 50 value 304.659343
## iter 60 value 304.633704
## iter 70 value 304.621107
## final value 304.555423
## converged
## # weights: 4
## initial value 457.531460
## final value 353.451549
## converged
## # weights: 10
## initial value 580.355861
## iter 10 value 353.451575
## final value 353.451447
## converged
## # weights: 16
## initial value 450.271029
## iter 10 value 350.949705
## iter 20 value 304.146542
## iter 30 value 303.271100
## iter 40 value 303.211435
## iter 50 value 303.132279
## iter 60 value 303.082733
## iter 70 value 303.055567
## iter 80 value 303.014554
## iter 90 value 302.950375
## iter 100 value 302.215787
## final value 302.215787
## stopped after 100 iterations
## # weights: 4
## initial value 453.819945
## final value 353.567359
## converged
## # weights: 10
## initial value 675.599902
## iter 10 value 323.002546
## iter 20 value 308.149401
## iter 30 value 307.728453
## iter 40 value 307.257303
## iter 50 value 306.842859
## iter 60 value 306.619149
## iter 70 value 306.556011
## final value 306.555577
## converged
## # weights: 16
## initial value 804.293159
## iter 10 value 332.781032
## iter 20 value 308.376082
## iter 30 value 307.219883
## iter 40 value 306.872199
## iter 50 value 306.575541
## iter 60 value 306.525905
## iter 70 value 306.522870
## iter 70 value 306.522869
## iter 70 value 306.522869
## final value 306.522869
## converged
## # weights: 4
## initial value 434.459070
## final value 353.452910
## converged
## # weights: 10
## initial value 355.504112
## iter 10 value 352.422991
## iter 20 value 303.879299
## iter 30 value 303.291412
## iter 40 value 303.164034
## iter 50 value 303.125372
## iter 60 value 303.115555
## iter 70 value 303.114164
## final value 303.113378
## converged
## # weights: 16
## initial value 522.862790
## iter 10 value 340.863142
## iter 20 value 305.617442
## iter 30 value 303.565152
## iter 40 value 303.275164
## iter 50 value 303.135944
## iter 60 value 303.028580
## iter 70 value 302.293949
## iter 80 value 301.913706
## iter 90 value 301.337658
## iter 100 value 300.654780
## final value 300.654780
## stopped after 100 iterations
## # weights: 16
## initial value 400.296220
## iter 10 value 361.030075
## iter 20 value 345.231166
## iter 30 value 343.797286
## iter 40 value 343.375311
## iter 50 value 342.983294
## iter 60 value 342.789364
## iter 70 value 342.649053
## iter 80 value 342.462723
## iter 90 value 342.448107
## iter 100 value 342.431308
## final value 342.431308
## stopped after 100 iterations
ann_model
## Neural Network
##
## 786 samples
## 1 predictor
## 2 classes: 'bad', 'good'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 707, 708, 707, 707, 708, 708, ...
## Resampling results across tuning parameters:
##
## size decay ROC Sens Spec
## 1 0e+00 0.5267718 0.007666667 0.9965079
## 1 1e-04 0.5065370 0.008916667 0.9980952
## 1 1e-01 0.5167989 0.007666667 0.9984127
## 3 0e+00 0.5896376 0.016666667 0.9974603
## 3 1e-04 0.6031706 0.033250000 0.9923810
## 3 1e-01 0.7255509 0.039583333 0.9946032
## 5 0e+00 0.6854934 0.048333333 0.9901587
## 5 1e-04 0.7225311 0.058833333 0.9898413
## 5 1e-01 0.7386409 0.039583333 0.9930159
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were size = 5 and decay = 0.1.
ann_pred <- predict(ann_model, testset, type = "prob")
ann_measures <- fpr_tpr(p = ann_pred$good, dataset = testset)
plot(ann_measures$fpr, ann_measures$tpr, type = "l", col = 2,
ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)
In the end, we look at the boost model.
It also tune parameters “interaction.depth” and “n.trees”, then chose the optimal models by the largest auc value.
After tune the cut-off point, the performance of the boost model is slight better.
### tune boosting
boost_model <- train(play.type ~ yards, data = trainset,
method = "gbm",
trControl = ctrl)
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9734 nan 0.1000 0.0089
## 2 0.9606 nan 0.1000 0.0076
## 3 0.9433 nan 0.1000 0.0057
## 4 0.9331 nan 0.1000 0.0043
## 5 0.9244 nan 0.1000 0.0040
## 6 0.9165 nan 0.1000 0.0027
## 7 0.9100 nan 0.1000 0.0018
## 8 0.9051 nan 0.1000 0.0020
## 9 0.8982 nan 0.1000 0.0012
## 10 0.8929 nan 0.1000 0.0024
## 20 0.8620 nan 0.1000 0.0015
## 40 0.8442 nan 0.1000 -0.0002
## 60 0.8381 nan 0.1000 -0.0004
## 80 0.8366 nan 0.1000 -0.0002
## 100 0.8342 nan 0.1000 -0.0006
## 120 0.8307 nan 0.1000 -0.0004
## 140 0.8285 nan 0.1000 -0.0001
## 150 0.8275 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9657 nan 0.1000 0.0095
## 2 0.9441 nan 0.1000 0.0072
## 3 0.9282 nan 0.1000 0.0075
## 4 0.9162 nan 0.1000 0.0044
## 5 0.9089 nan 0.1000 0.0032
## 6 0.8996 nan 0.1000 0.0034
## 7 0.8914 nan 0.1000 0.0033
## 8 0.8853 nan 0.1000 0.0030
## 9 0.8812 nan 0.1000 0.0004
## 10 0.8766 nan 0.1000 0.0019
## 20 0.8480 nan 0.1000 -0.0001
## 40 0.8317 nan 0.1000 -0.0010
## 60 0.8233 nan 0.1000 -0.0007
## 80 0.8186 nan 0.1000 -0.0022
## 100 0.8167 nan 0.1000 -0.0009
## 120 0.8150 nan 0.1000 -0.0006
## 140 0.8142 nan 0.1000 -0.0006
## 150 0.8130 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9662 nan 0.1000 0.0119
## 2 0.9420 nan 0.1000 0.0103
## 3 0.9262 nan 0.1000 0.0067
## 4 0.9138 nan 0.1000 0.0055
## 5 0.9021 nan 0.1000 0.0046
## 6 0.8933 nan 0.1000 0.0024
## 7 0.8863 nan 0.1000 0.0023
## 8 0.8803 nan 0.1000 0.0015
## 9 0.8748 nan 0.1000 0.0015
## 10 0.8669 nan 0.1000 0.0018
## 20 0.8401 nan 0.1000 -0.0005
## 40 0.8243 nan 0.1000 -0.0018
## 60 0.8161 nan 0.1000 -0.0018
## 80 0.8137 nan 0.1000 -0.0009
## 100 0.8124 nan 0.1000 -0.0017
## 120 0.8112 nan 0.1000 -0.0013
## 140 0.8115 nan 0.1000 -0.0016
## 150 0.8101 nan 0.1000 -0.0019
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9812 nan 0.1000 0.0079
## 2 0.9705 nan 0.1000 0.0032
## 3 0.9580 nan 0.1000 0.0067
## 4 0.9482 nan 0.1000 0.0051
## 5 0.9382 nan 0.1000 0.0038
## 6 0.9303 nan 0.1000 0.0025
## 7 0.9234 nan 0.1000 0.0022
## 8 0.9156 nan 0.1000 0.0024
## 9 0.9089 nan 0.1000 0.0021
## 10 0.9036 nan 0.1000 0.0018
## 20 0.8756 nan 0.1000 -0.0003
## 40 0.8660 nan 0.1000 -0.0011
## 60 0.8605 nan 0.1000 0.0004
## 80 0.8561 nan 0.1000 -0.0000
## 100 0.8549 nan 0.1000 -0.0006
## 120 0.8523 nan 0.1000 -0.0004
## 140 0.8522 nan 0.1000 -0.0003
## 150 0.8518 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9774 nan 0.1000 0.0106
## 2 0.9608 nan 0.1000 0.0060
## 3 0.9456 nan 0.1000 0.0078
## 4 0.9312 nan 0.1000 0.0049
## 5 0.9207 nan 0.1000 0.0047
## 6 0.9123 nan 0.1000 0.0034
## 7 0.9073 nan 0.1000 0.0017
## 8 0.9002 nan 0.1000 0.0023
## 9 0.8981 nan 0.1000 -0.0006
## 10 0.8921 nan 0.1000 0.0012
## 20 0.8697 nan 0.1000 0.0003
## 40 0.8576 nan 0.1000 -0.0001
## 60 0.8497 nan 0.1000 0.0003
## 80 0.8454 nan 0.1000 -0.0006
## 100 0.8442 nan 0.1000 -0.0007
## 120 0.8423 nan 0.1000 -0.0004
## 140 0.8419 nan 0.1000 -0.0010
## 150 0.8420 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9750 nan 0.1000 0.0099
## 2 0.9561 nan 0.1000 0.0068
## 3 0.9418 nan 0.1000 0.0061
## 4 0.9297 nan 0.1000 0.0041
## 5 0.9186 nan 0.1000 0.0022
## 6 0.9089 nan 0.1000 0.0040
## 7 0.9024 nan 0.1000 0.0012
## 8 0.8971 nan 0.1000 0.0012
## 9 0.8930 nan 0.1000 0.0011
## 10 0.8890 nan 0.1000 -0.0008
## 20 0.8635 nan 0.1000 0.0003
## 40 0.8487 nan 0.1000 -0.0008
## 60 0.8424 nan 0.1000 -0.0011
## 80 0.8395 nan 0.1000 -0.0017
## 100 0.8376 nan 0.1000 -0.0020
## 120 0.8363 nan 0.1000 -0.0028
## 140 0.8359 nan 0.1000 -0.0009
## 150 0.8356 nan 0.1000 -0.0021
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9807 nan 0.1000 0.0071
## 2 0.9635 nan 0.1000 0.0073
## 3 0.9484 nan 0.1000 0.0064
## 4 0.9385 nan 0.1000 0.0052
## 5 0.9326 nan 0.1000 0.0027
## 6 0.9233 nan 0.1000 0.0026
## 7 0.9131 nan 0.1000 0.0024
## 8 0.9062 nan 0.1000 0.0028
## 9 0.8989 nan 0.1000 0.0027
## 10 0.8940 nan 0.1000 0.0013
## 20 0.8694 nan 0.1000 -0.0000
## 40 0.8524 nan 0.1000 -0.0001
## 60 0.8447 nan 0.1000 -0.0005
## 80 0.8430 nan 0.1000 -0.0012
## 100 0.8394 nan 0.1000 -0.0004
## 120 0.8380 nan 0.1000 -0.0005
## 140 0.8363 nan 0.1000 -0.0006
## 150 0.8349 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9771 nan 0.1000 0.0113
## 2 0.9556 nan 0.1000 0.0081
## 3 0.9376 nan 0.1000 0.0054
## 4 0.9254 nan 0.1000 0.0060
## 5 0.9147 nan 0.1000 0.0056
## 6 0.9071 nan 0.1000 0.0034
## 7 0.8998 nan 0.1000 0.0011
## 8 0.8938 nan 0.1000 0.0020
## 9 0.8877 nan 0.1000 0.0016
## 10 0.8824 nan 0.1000 0.0026
## 20 0.8564 nan 0.1000 -0.0005
## 40 0.8371 nan 0.1000 -0.0007
## 60 0.8331 nan 0.1000 -0.0006
## 80 0.8286 nan 0.1000 -0.0012
## 100 0.8254 nan 0.1000 -0.0006
## 120 0.8242 nan 0.1000 -0.0004
## 140 0.8233 nan 0.1000 -0.0010
## 150 0.8220 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9737 nan 0.1000 0.0100
## 2 0.9529 nan 0.1000 0.0075
## 3 0.9348 nan 0.1000 0.0082
## 4 0.9210 nan 0.1000 0.0053
## 5 0.9100 nan 0.1000 0.0052
## 6 0.8985 nan 0.1000 0.0041
## 7 0.8900 nan 0.1000 0.0016
## 8 0.8846 nan 0.1000 0.0013
## 9 0.8808 nan 0.1000 -0.0009
## 10 0.8754 nan 0.1000 0.0023
## 20 0.8487 nan 0.1000 -0.0005
## 40 0.8313 nan 0.1000 -0.0008
## 60 0.8277 nan 0.1000 -0.0006
## 80 0.8247 nan 0.1000 -0.0009
## 100 0.8206 nan 0.1000 -0.0008
## 120 0.8192 nan 0.1000 -0.0017
## 140 0.8190 nan 0.1000 -0.0005
## 150 0.8184 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9737 nan 0.1000 0.0113
## 2 0.9570 nan 0.1000 0.0071
## 3 0.9440 nan 0.1000 0.0051
## 4 0.9323 nan 0.1000 0.0048
## 5 0.9232 nan 0.1000 0.0050
## 6 0.9171 nan 0.1000 0.0024
## 7 0.9108 nan 0.1000 0.0034
## 8 0.9036 nan 0.1000 0.0032
## 9 0.8953 nan 0.1000 0.0019
## 10 0.8913 nan 0.1000 0.0021
## 20 0.8621 nan 0.1000 0.0002
## 40 0.8474 nan 0.1000 -0.0008
## 60 0.8420 nan 0.1000 -0.0005
## 80 0.8392 nan 0.1000 -0.0005
## 100 0.8370 nan 0.1000 -0.0000
## 120 0.8343 nan 0.1000 -0.0006
## 140 0.8332 nan 0.1000 -0.0002
## 150 0.8330 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9703 nan 0.1000 0.0110
## 2 0.9472 nan 0.1000 0.0076
## 3 0.9321 nan 0.1000 0.0070
## 4 0.9211 nan 0.1000 0.0059
## 5 0.9079 nan 0.1000 0.0056
## 6 0.8988 nan 0.1000 0.0039
## 7 0.8927 nan 0.1000 0.0031
## 8 0.8855 nan 0.1000 0.0018
## 9 0.8802 nan 0.1000 0.0025
## 10 0.8745 nan 0.1000 0.0009
## 20 0.8482 nan 0.1000 -0.0001
## 40 0.8362 nan 0.1000 -0.0001
## 60 0.8308 nan 0.1000 -0.0012
## 80 0.8265 nan 0.1000 -0.0003
## 100 0.8239 nan 0.1000 -0.0008
## 120 0.8224 nan 0.1000 -0.0003
## 140 0.8216 nan 0.1000 -0.0003
## 150 0.8204 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9748 nan 0.1000 0.0085
## 2 0.9483 nan 0.1000 0.0100
## 3 0.9315 nan 0.1000 0.0066
## 4 0.9169 nan 0.1000 0.0069
## 5 0.9059 nan 0.1000 0.0051
## 6 0.8959 nan 0.1000 0.0039
## 7 0.8869 nan 0.1000 0.0043
## 8 0.8794 nan 0.1000 0.0036
## 9 0.8731 nan 0.1000 0.0024
## 10 0.8698 nan 0.1000 0.0004
## 20 0.8446 nan 0.1000 -0.0009
## 40 0.8291 nan 0.1000 -0.0016
## 60 0.8244 nan 0.1000 -0.0008
## 80 0.8216 nan 0.1000 -0.0016
## 100 0.8187 nan 0.1000 -0.0020
## 120 0.8170 nan 0.1000 -0.0003
## 140 0.8155 nan 0.1000 -0.0012
## 150 0.8157 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9770 nan 0.1000 0.0078
## 2 0.9631 nan 0.1000 0.0074
## 3 0.9525 nan 0.1000 0.0049
## 4 0.9404 nan 0.1000 0.0051
## 5 0.9312 nan 0.1000 0.0042
## 6 0.9222 nan 0.1000 0.0035
## 7 0.9141 nan 0.1000 0.0031
## 8 0.9079 nan 0.1000 0.0020
## 9 0.9028 nan 0.1000 0.0015
## 10 0.8983 nan 0.1000 0.0011
## 20 0.8703 nan 0.1000 0.0001
## 40 0.8525 nan 0.1000 -0.0012
## 60 0.8480 nan 0.1000 -0.0004
## 80 0.8462 nan 0.1000 -0.0012
## 100 0.8430 nan 0.1000 -0.0003
## 120 0.8412 nan 0.1000 -0.0005
## 140 0.8390 nan 0.1000 -0.0001
## 150 0.8382 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9735 nan 0.1000 0.0107
## 2 0.9543 nan 0.1000 0.0074
## 3 0.9383 nan 0.1000 0.0068
## 4 0.9275 nan 0.1000 0.0026
## 5 0.9152 nan 0.1000 0.0042
## 6 0.9052 nan 0.1000 0.0044
## 7 0.8978 nan 0.1000 0.0029
## 8 0.8919 nan 0.1000 0.0020
## 9 0.8848 nan 0.1000 0.0025
## 10 0.8793 nan 0.1000 0.0027
## 20 0.8539 nan 0.1000 -0.0013
## 40 0.8385 nan 0.1000 -0.0012
## 60 0.8347 nan 0.1000 -0.0008
## 80 0.8303 nan 0.1000 -0.0012
## 100 0.8265 nan 0.1000 -0.0010
## 120 0.8256 nan 0.1000 -0.0007
## 140 0.8239 nan 0.1000 -0.0004
## 150 0.8243 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9699 nan 0.1000 0.0102
## 2 0.9479 nan 0.1000 0.0101
## 3 0.9284 nan 0.1000 0.0041
## 4 0.9162 nan 0.1000 0.0057
## 5 0.9065 nan 0.1000 0.0028
## 6 0.8975 nan 0.1000 0.0039
## 7 0.8917 nan 0.1000 0.0018
## 8 0.8842 nan 0.1000 0.0001
## 9 0.8791 nan 0.1000 0.0016
## 10 0.8737 nan 0.1000 0.0012
## 20 0.8462 nan 0.1000 -0.0004
## 40 0.8315 nan 0.1000 -0.0011
## 60 0.8268 nan 0.1000 -0.0009
## 80 0.8253 nan 0.1000 -0.0012
## 100 0.8236 nan 0.1000 -0.0010
## 120 0.8231 nan 0.1000 -0.0020
## 140 0.8220 nan 0.1000 -0.0019
## 150 0.8211 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9799 nan 0.1000 0.0078
## 2 0.9633 nan 0.1000 0.0073
## 3 0.9528 nan 0.1000 0.0059
## 4 0.9470 nan 0.1000 0.0008
## 5 0.9359 nan 0.1000 0.0047
## 6 0.9267 nan 0.1000 0.0027
## 7 0.9178 nan 0.1000 0.0033
## 8 0.9123 nan 0.1000 0.0008
## 9 0.9082 nan 0.1000 0.0003
## 10 0.9030 nan 0.1000 0.0022
## 20 0.8716 nan 0.1000 -0.0007
## 40 0.8599 nan 0.1000 -0.0008
## 60 0.8544 nan 0.1000 -0.0010
## 80 0.8515 nan 0.1000 -0.0002
## 100 0.8504 nan 0.1000 -0.0012
## 120 0.8479 nan 0.1000 -0.0002
## 140 0.8465 nan 0.1000 -0.0001
## 150 0.8458 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9802 nan 0.1000 0.0084
## 2 0.9640 nan 0.1000 0.0084
## 3 0.9491 nan 0.1000 0.0064
## 4 0.9325 nan 0.1000 0.0045
## 5 0.9207 nan 0.1000 0.0043
## 6 0.9115 nan 0.1000 0.0036
## 7 0.9046 nan 0.1000 0.0026
## 8 0.9001 nan 0.1000 0.0025
## 9 0.8936 nan 0.1000 0.0022
## 10 0.8880 nan 0.1000 0.0021
## 20 0.8629 nan 0.1000 0.0007
## 40 0.8486 nan 0.1000 -0.0004
## 60 0.8451 nan 0.1000 -0.0017
## 80 0.8421 nan 0.1000 -0.0011
## 100 0.8406 nan 0.1000 -0.0007
## 120 0.8388 nan 0.1000 -0.0009
## 140 0.8372 nan 0.1000 -0.0014
## 150 0.8364 nan 0.1000 -0.0024
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9759 nan 0.1000 0.0101
## 2 0.9579 nan 0.1000 0.0078
## 3 0.9365 nan 0.1000 0.0069
## 4 0.9234 nan 0.1000 0.0057
## 5 0.9143 nan 0.1000 0.0035
## 6 0.9098 nan 0.1000 -0.0002
## 7 0.9013 nan 0.1000 0.0039
## 8 0.8946 nan 0.1000 0.0015
## 9 0.8880 nan 0.1000 0.0026
## 10 0.8825 nan 0.1000 0.0022
## 20 0.8576 nan 0.1000 -0.0004
## 40 0.8421 nan 0.1000 -0.0022
## 60 0.8380 nan 0.1000 -0.0012
## 80 0.8362 nan 0.1000 -0.0009
## 100 0.8329 nan 0.1000 -0.0013
## 120 0.8324 nan 0.1000 -0.0009
## 140 0.8337 nan 0.1000 -0.0014
## 150 0.8323 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9757 nan 0.1000 0.0093
## 2 0.9628 nan 0.1000 0.0069
## 3 0.9492 nan 0.1000 0.0062
## 4 0.9368 nan 0.1000 0.0036
## 5 0.9284 nan 0.1000 0.0036
## 6 0.9224 nan 0.1000 0.0022
## 7 0.9158 nan 0.1000 0.0020
## 8 0.9117 nan 0.1000 0.0020
## 9 0.9054 nan 0.1000 0.0025
## 10 0.9000 nan 0.1000 0.0012
## 20 0.8754 nan 0.1000 0.0001
## 40 0.8603 nan 0.1000 -0.0002
## 60 0.8572 nan 0.1000 -0.0004
## 80 0.8528 nan 0.1000 -0.0002
## 100 0.8493 nan 0.1000 -0.0003
## 120 0.8468 nan 0.1000 -0.0011
## 140 0.8443 nan 0.1000 -0.0004
## 150 0.8436 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9682 nan 0.1000 0.0081
## 2 0.9511 nan 0.1000 0.0060
## 3 0.9387 nan 0.1000 0.0065
## 4 0.9270 nan 0.1000 0.0058
## 5 0.9164 nan 0.1000 0.0041
## 6 0.9063 nan 0.1000 0.0037
## 7 0.8999 nan 0.1000 0.0026
## 8 0.8947 nan 0.1000 0.0023
## 9 0.8902 nan 0.1000 0.0020
## 10 0.8847 nan 0.1000 0.0016
## 20 0.8640 nan 0.1000 -0.0002
## 40 0.8503 nan 0.1000 -0.0007
## 60 0.8417 nan 0.1000 -0.0007
## 80 0.8355 nan 0.1000 -0.0004
## 100 0.8326 nan 0.1000 -0.0005
## 120 0.8290 nan 0.1000 -0.0017
## 140 0.8287 nan 0.1000 -0.0009
## 150 0.8276 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9672 nan 0.1000 0.0104
## 2 0.9531 nan 0.1000 0.0063
## 3 0.9379 nan 0.1000 0.0063
## 4 0.9242 nan 0.1000 0.0057
## 5 0.9117 nan 0.1000 0.0045
## 6 0.9039 nan 0.1000 0.0025
## 7 0.8956 nan 0.1000 0.0027
## 8 0.8889 nan 0.1000 0.0009
## 9 0.8847 nan 0.1000 0.0012
## 10 0.8789 nan 0.1000 0.0006
## 20 0.8535 nan 0.1000 -0.0016
## 40 0.8382 nan 0.1000 -0.0004
## 60 0.8331 nan 0.1000 -0.0009
## 80 0.8288 nan 0.1000 -0.0007
## 100 0.8272 nan 0.1000 -0.0011
## 120 0.8251 nan 0.1000 -0.0013
## 140 0.8247 nan 0.1000 -0.0023
## 150 0.8243 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9746 nan 0.1000 0.0110
## 2 0.9575 nan 0.1000 0.0086
## 3 0.9428 nan 0.1000 0.0058
## 4 0.9294 nan 0.1000 0.0056
## 5 0.9242 nan 0.1000 0.0015
## 6 0.9156 nan 0.1000 0.0041
## 7 0.9080 nan 0.1000 0.0029
## 8 0.8993 nan 0.1000 0.0018
## 9 0.8918 nan 0.1000 0.0026
## 10 0.8861 nan 0.1000 0.0028
## 20 0.8572 nan 0.1000 -0.0004
## 40 0.8395 nan 0.1000 -0.0006
## 60 0.8368 nan 0.1000 -0.0009
## 80 0.8327 nan 0.1000 -0.0003
## 100 0.8295 nan 0.1000 -0.0004
## 120 0.8279 nan 0.1000 -0.0007
## 140 0.8262 nan 0.1000 -0.0003
## 150 0.8250 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9683 nan 0.1000 0.0115
## 2 0.9460 nan 0.1000 0.0080
## 3 0.9278 nan 0.1000 0.0078
## 4 0.9133 nan 0.1000 0.0046
## 5 0.9034 nan 0.1000 0.0037
## 6 0.8919 nan 0.1000 0.0032
## 7 0.8839 nan 0.1000 0.0017
## 8 0.8779 nan 0.1000 0.0030
## 9 0.8718 nan 0.1000 0.0023
## 10 0.8669 nan 0.1000 0.0019
## 20 0.8441 nan 0.1000 -0.0002
## 40 0.8337 nan 0.1000 -0.0004
## 60 0.8268 nan 0.1000 -0.0005
## 80 0.8219 nan 0.1000 -0.0020
## 100 0.8177 nan 0.1000 -0.0010
## 120 0.8161 nan 0.1000 -0.0024
## 140 0.8150 nan 0.1000 -0.0015
## 150 0.8136 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9655 nan 0.1000 0.0135
## 2 0.9451 nan 0.1000 0.0094
## 3 0.9259 nan 0.1000 0.0074
## 4 0.9126 nan 0.1000 0.0055
## 5 0.8996 nan 0.1000 0.0053
## 6 0.8926 nan 0.1000 0.0032
## 7 0.8837 nan 0.1000 0.0023
## 8 0.8773 nan 0.1000 0.0011
## 9 0.8718 nan 0.1000 0.0017
## 10 0.8664 nan 0.1000 0.0017
## 20 0.8405 nan 0.1000 -0.0021
## 40 0.8237 nan 0.1000 -0.0014
## 60 0.8162 nan 0.1000 -0.0021
## 80 0.8139 nan 0.1000 -0.0008
## 100 0.8119 nan 0.1000 -0.0008
## 120 0.8106 nan 0.1000 -0.0015
## 140 0.8100 nan 0.1000 -0.0011
## 150 0.8093 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9783 nan 0.1000 0.0086
## 2 0.9632 nan 0.1000 0.0070
## 3 0.9480 nan 0.1000 0.0051
## 4 0.9366 nan 0.1000 0.0046
## 5 0.9299 nan 0.1000 0.0031
## 6 0.9210 nan 0.1000 0.0036
## 7 0.9141 nan 0.1000 0.0029
## 8 0.9085 nan 0.1000 0.0022
## 9 0.9055 nan 0.1000 0.0006
## 10 0.9009 nan 0.1000 0.0023
## 20 0.8723 nan 0.1000 0.0007
## 40 0.8640 nan 0.1000 -0.0000
## 60 0.8599 nan 0.1000 -0.0014
## 80 0.8568 nan 0.1000 -0.0002
## 100 0.8547 nan 0.1000 -0.0009
## 120 0.8542 nan 0.1000 -0.0003
## 140 0.8537 nan 0.1000 -0.0003
## 150 0.8527 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0100
## 2 0.9562 nan 0.1000 0.0083
## 3 0.9418 nan 0.1000 0.0058
## 4 0.9295 nan 0.1000 0.0035
## 5 0.9196 nan 0.1000 0.0041
## 6 0.9116 nan 0.1000 0.0038
## 7 0.9029 nan 0.1000 0.0028
## 8 0.8959 nan 0.1000 0.0021
## 9 0.8906 nan 0.1000 0.0018
## 10 0.8871 nan 0.1000 0.0017
## 20 0.8658 nan 0.1000 0.0009
## 40 0.8543 nan 0.1000 -0.0012
## 60 0.8495 nan 0.1000 -0.0006
## 80 0.8460 nan 0.1000 -0.0017
## 100 0.8440 nan 0.1000 -0.0014
## 120 0.8435 nan 0.1000 -0.0003
## 140 0.8429 nan 0.1000 -0.0005
## 150 0.8421 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9769 nan 0.1000 0.0093
## 2 0.9621 nan 0.1000 0.0064
## 3 0.9448 nan 0.1000 0.0050
## 4 0.9316 nan 0.1000 0.0064
## 5 0.9201 nan 0.1000 0.0035
## 6 0.9111 nan 0.1000 0.0036
## 7 0.9035 nan 0.1000 0.0007
## 8 0.8958 nan 0.1000 0.0035
## 9 0.8897 nan 0.1000 0.0019
## 10 0.8865 nan 0.1000 0.0005
## 20 0.8648 nan 0.1000 -0.0011
## 40 0.8507 nan 0.1000 -0.0004
## 60 0.8462 nan 0.1000 -0.0008
## 80 0.8450 nan 0.1000 -0.0012
## 100 0.8432 nan 0.1000 -0.0019
## 120 0.8439 nan 0.1000 -0.0021
## 140 0.8422 nan 0.1000 -0.0010
## 150 0.8420 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9751 nan 0.1000 0.0085
## 2 0.9606 nan 0.1000 0.0068
## 3 0.9471 nan 0.1000 0.0053
## 4 0.9367 nan 0.1000 0.0035
## 5 0.9283 nan 0.1000 0.0032
## 6 0.9204 nan 0.1000 0.0033
## 7 0.9164 nan 0.1000 0.0009
## 8 0.9092 nan 0.1000 0.0027
## 9 0.9034 nan 0.1000 0.0022
## 10 0.8980 nan 0.1000 0.0027
## 20 0.8722 nan 0.1000 0.0002
## 40 0.8634 nan 0.1000 -0.0004
## 60 0.8577 nan 0.1000 -0.0008
## 80 0.8560 nan 0.1000 -0.0003
## 100 0.8545 nan 0.1000 -0.0008
## 120 0.8515 nan 0.1000 -0.0005
## 140 0.8509 nan 0.1000 -0.0000
## 150 0.8492 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9697 nan 0.1000 0.0086
## 2 0.9534 nan 0.1000 0.0060
## 3 0.9378 nan 0.1000 0.0071
## 4 0.9273 nan 0.1000 0.0046
## 5 0.9176 nan 0.1000 0.0027
## 6 0.9088 nan 0.1000 0.0031
## 7 0.9014 nan 0.1000 0.0036
## 8 0.8948 nan 0.1000 0.0018
## 9 0.8888 nan 0.1000 0.0022
## 10 0.8850 nan 0.1000 0.0014
## 20 0.8648 nan 0.1000 -0.0007
## 40 0.8516 nan 0.1000 -0.0005
## 60 0.8467 nan 0.1000 -0.0006
## 80 0.8411 nan 0.1000 -0.0009
## 100 0.8378 nan 0.1000 -0.0002
## 120 0.8357 nan 0.1000 -0.0003
## 140 0.8344 nan 0.1000 -0.0020
## 150 0.8327 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9688 nan 0.1000 0.0099
## 2 0.9528 nan 0.1000 0.0075
## 3 0.9359 nan 0.1000 0.0060
## 4 0.9223 nan 0.1000 0.0038
## 5 0.9151 nan 0.1000 0.0040
## 6 0.9065 nan 0.1000 0.0032
## 7 0.8981 nan 0.1000 0.0030
## 8 0.8906 nan 0.1000 0.0025
## 9 0.8859 nan 0.1000 0.0003
## 10 0.8813 nan 0.1000 0.0014
## 20 0.8571 nan 0.1000 0.0003
## 40 0.8460 nan 0.1000 -0.0025
## 60 0.8384 nan 0.1000 -0.0020
## 80 0.8360 nan 0.1000 -0.0007
## 100 0.8321 nan 0.1000 -0.0006
## 120 0.8334 nan 0.1000 -0.0013
## 140 0.8329 nan 0.1000 -0.0008
## 150 0.8318 nan 0.1000 -0.0017
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9735 nan 0.1000 0.0104
## 2 0.9553 nan 0.1000 0.0072
## 3 0.9434 nan 0.1000 0.0025
## 4 0.9313 nan 0.1000 0.0053
## 5 0.9227 nan 0.1000 0.0010
## 6 0.9153 nan 0.1000 0.0028
## 7 0.9105 nan 0.1000 0.0006
## 8 0.9022 nan 0.1000 0.0031
## 9 0.8966 nan 0.1000 0.0027
## 10 0.8888 nan 0.1000 0.0018
## 20 0.8607 nan 0.1000 0.0011
## 40 0.8468 nan 0.1000 -0.0001
## 60 0.8429 nan 0.1000 -0.0001
## 80 0.8394 nan 0.1000 -0.0003
## 100 0.8375 nan 0.1000 -0.0004
## 120 0.8355 nan 0.1000 -0.0002
## 140 0.8342 nan 0.1000 -0.0005
## 150 0.8333 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9717 nan 0.1000 0.0092
## 2 0.9542 nan 0.1000 0.0085
## 3 0.9373 nan 0.1000 0.0081
## 4 0.9244 nan 0.1000 0.0053
## 5 0.9135 nan 0.1000 0.0054
## 6 0.9034 nan 0.1000 0.0024
## 7 0.8944 nan 0.1000 0.0042
## 8 0.8862 nan 0.1000 0.0028
## 9 0.8803 nan 0.1000 0.0008
## 10 0.8768 nan 0.1000 0.0008
## 20 0.8530 nan 0.1000 0.0005
## 40 0.8350 nan 0.1000 -0.0012
## 60 0.8302 nan 0.1000 -0.0008
## 80 0.8274 nan 0.1000 -0.0004
## 100 0.8242 nan 0.1000 -0.0011
## 120 0.8227 nan 0.1000 -0.0025
## 140 0.8219 nan 0.1000 -0.0003
## 150 0.8206 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9724 nan 0.1000 0.0105
## 2 0.9568 nan 0.1000 0.0076
## 3 0.9358 nan 0.1000 0.0057
## 4 0.9205 nan 0.1000 0.0066
## 5 0.9109 nan 0.1000 0.0041
## 6 0.8990 nan 0.1000 0.0030
## 7 0.8906 nan 0.1000 0.0024
## 8 0.8860 nan 0.1000 0.0012
## 9 0.8802 nan 0.1000 0.0017
## 10 0.8735 nan 0.1000 0.0025
## 20 0.8469 nan 0.1000 -0.0008
## 40 0.8287 nan 0.1000 -0.0014
## 60 0.8225 nan 0.1000 -0.0012
## 80 0.8207 nan 0.1000 -0.0007
## 100 0.8187 nan 0.1000 -0.0005
## 120 0.8159 nan 0.1000 -0.0011
## 140 0.8153 nan 0.1000 -0.0014
## 150 0.8151 nan 0.1000 -0.0019
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9788 nan 0.1000 0.0104
## 2 0.9631 nan 0.1000 0.0080
## 3 0.9481 nan 0.1000 0.0045
## 4 0.9349 nan 0.1000 0.0062
## 5 0.9235 nan 0.1000 0.0049
## 6 0.9152 nan 0.1000 0.0039
## 7 0.9087 nan 0.1000 0.0033
## 8 0.9027 nan 0.1000 0.0027
## 9 0.8972 nan 0.1000 0.0020
## 10 0.8920 nan 0.1000 0.0011
## 20 0.8636 nan 0.1000 0.0011
## 40 0.8498 nan 0.1000 -0.0004
## 60 0.8437 nan 0.1000 -0.0006
## 80 0.8417 nan 0.1000 -0.0003
## 100 0.8397 nan 0.1000 -0.0005
## 120 0.8380 nan 0.1000 -0.0003
## 140 0.8350 nan 0.1000 -0.0015
## 150 0.8346 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9734 nan 0.1000 0.0114
## 2 0.9552 nan 0.1000 0.0096
## 3 0.9375 nan 0.1000 0.0081
## 4 0.9238 nan 0.1000 0.0046
## 5 0.9113 nan 0.1000 0.0044
## 6 0.9006 nan 0.1000 0.0037
## 7 0.8934 nan 0.1000 0.0020
## 8 0.8869 nan 0.1000 0.0030
## 9 0.8802 nan 0.1000 0.0024
## 10 0.8750 nan 0.1000 0.0014
## 20 0.8550 nan 0.1000 -0.0012
## 40 0.8383 nan 0.1000 -0.0006
## 60 0.8303 nan 0.1000 -0.0003
## 80 0.8267 nan 0.1000 -0.0002
## 100 0.8257 nan 0.1000 -0.0012
## 120 0.8240 nan 0.1000 -0.0012
## 140 0.8231 nan 0.1000 -0.0009
## 150 0.8221 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9710 nan 0.1000 0.0112
## 2 0.9514 nan 0.1000 0.0090
## 3 0.9364 nan 0.1000 0.0058
## 4 0.9220 nan 0.1000 0.0061
## 5 0.9097 nan 0.1000 0.0045
## 6 0.8975 nan 0.1000 0.0040
## 7 0.8895 nan 0.1000 0.0034
## 8 0.8813 nan 0.1000 0.0019
## 9 0.8750 nan 0.1000 0.0017
## 10 0.8689 nan 0.1000 0.0014
## 20 0.8456 nan 0.1000 0.0002
## 40 0.8334 nan 0.1000 -0.0019
## 60 0.8262 nan 0.1000 -0.0006
## 80 0.8229 nan 0.1000 -0.0018
## 100 0.8211 nan 0.1000 -0.0010
## 120 0.8198 nan 0.1000 -0.0010
## 140 0.8189 nan 0.1000 -0.0035
## 150 0.8186 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9796 nan 0.1000 0.0096
## 2 0.9638 nan 0.1000 0.0070
## 3 0.9488 nan 0.1000 0.0068
## 4 0.9371 nan 0.1000 0.0042
## 5 0.9274 nan 0.1000 0.0046
## 6 0.9199 nan 0.1000 0.0036
## 7 0.9129 nan 0.1000 0.0034
## 8 0.9061 nan 0.1000 0.0031
## 9 0.8995 nan 0.1000 0.0018
## 10 0.8958 nan 0.1000 0.0015
## 20 0.8682 nan 0.1000 -0.0001
## 40 0.8551 nan 0.1000 -0.0013
## 60 0.8496 nan 0.1000 -0.0003
## 80 0.8453 nan 0.1000 -0.0001
## 100 0.8444 nan 0.1000 -0.0006
## 120 0.8425 nan 0.1000 -0.0003
## 140 0.8418 nan 0.1000 -0.0009
## 150 0.8409 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9726 nan 0.1000 0.0092
## 2 0.9549 nan 0.1000 0.0062
## 3 0.9406 nan 0.1000 0.0073
## 4 0.9275 nan 0.1000 0.0037
## 5 0.9167 nan 0.1000 0.0040
## 6 0.9074 nan 0.1000 0.0043
## 7 0.8995 nan 0.1000 0.0029
## 8 0.8938 nan 0.1000 0.0026
## 9 0.8896 nan 0.1000 0.0018
## 10 0.8837 nan 0.1000 0.0005
## 20 0.8566 nan 0.1000 -0.0006
## 40 0.8410 nan 0.1000 -0.0013
## 60 0.8349 nan 0.1000 -0.0007
## 80 0.8307 nan 0.1000 -0.0006
## 100 0.8283 nan 0.1000 -0.0010
## 120 0.8264 nan 0.1000 -0.0006
## 140 0.8256 nan 0.1000 -0.0006
## 150 0.8255 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9714 nan 0.1000 0.0116
## 2 0.9525 nan 0.1000 0.0095
## 3 0.9362 nan 0.1000 0.0079
## 4 0.9224 nan 0.1000 0.0047
## 5 0.9147 nan 0.1000 0.0023
## 6 0.9038 nan 0.1000 0.0031
## 7 0.8988 nan 0.1000 -0.0001
## 8 0.8930 nan 0.1000 0.0014
## 9 0.8874 nan 0.1000 0.0025
## 10 0.8792 nan 0.1000 0.0027
## 20 0.8513 nan 0.1000 -0.0002
## 40 0.8350 nan 0.1000 -0.0028
## 60 0.8307 nan 0.1000 -0.0014
## 80 0.8281 nan 0.1000 -0.0009
## 100 0.8257 nan 0.1000 -0.0023
## 120 0.8254 nan 0.1000 -0.0007
## 140 0.8233 nan 0.1000 -0.0017
## 150 0.8238 nan 0.1000 -0.0024
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9824 nan 0.1000 0.0062
## 2 0.9596 nan 0.1000 0.0068
## 3 0.9451 nan 0.1000 0.0064
## 4 0.9326 nan 0.1000 0.0048
## 5 0.9210 nan 0.1000 0.0033
## 6 0.9144 nan 0.1000 0.0032
## 7 0.9068 nan 0.1000 0.0026
## 8 0.9014 nan 0.1000 0.0024
## 9 0.8969 nan 0.1000 0.0017
## 10 0.8927 nan 0.1000 0.0017
## 20 0.8677 nan 0.1000 0.0003
## 40 0.8531 nan 0.1000 -0.0013
## 60 0.8505 nan 0.1000 -0.0008
## 80 0.8474 nan 0.1000 -0.0003
## 100 0.8447 nan 0.1000 -0.0002
## 120 0.8436 nan 0.1000 -0.0007
## 140 0.8420 nan 0.1000 -0.0006
## 150 0.8414 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9705 nan 0.1000 0.0094
## 2 0.9521 nan 0.1000 0.0074
## 3 0.9370 nan 0.1000 0.0073
## 4 0.9239 nan 0.1000 0.0051
## 5 0.9133 nan 0.1000 0.0045
## 6 0.9032 nan 0.1000 0.0025
## 7 0.8966 nan 0.1000 0.0019
## 8 0.8883 nan 0.1000 0.0027
## 9 0.8833 nan 0.1000 0.0018
## 10 0.8794 nan 0.1000 0.0013
## 20 0.8580 nan 0.1000 -0.0022
## 40 0.8453 nan 0.1000 -0.0016
## 60 0.8394 nan 0.1000 -0.0004
## 80 0.8385 nan 0.1000 -0.0007
## 100 0.8357 nan 0.1000 -0.0012
## 120 0.8347 nan 0.1000 -0.0016
## 140 0.8348 nan 0.1000 -0.0008
## 150 0.8337 nan 0.1000 -0.0017
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9733 nan 0.1000 0.0104
## 2 0.9499 nan 0.1000 0.0083
## 3 0.9353 nan 0.1000 0.0056
## 4 0.9212 nan 0.1000 0.0066
## 5 0.9111 nan 0.1000 0.0017
## 6 0.8988 nan 0.1000 0.0041
## 7 0.8905 nan 0.1000 0.0030
## 8 0.8853 nan 0.1000 0.0013
## 9 0.8795 nan 0.1000 0.0022
## 10 0.8743 nan 0.1000 0.0015
## 20 0.8517 nan 0.1000 -0.0009
## 40 0.8396 nan 0.1000 -0.0017
## 60 0.8362 nan 0.1000 -0.0006
## 80 0.8319 nan 0.1000 -0.0011
## 100 0.8308 nan 0.1000 -0.0025
## 120 0.8293 nan 0.1000 -0.0011
## 140 0.8280 nan 0.1000 -0.0016
## 150 0.8279 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9779 nan 0.1000 0.0062
## 2 0.9593 nan 0.1000 0.0058
## 3 0.9480 nan 0.1000 0.0042
## 4 0.9405 nan 0.1000 0.0024
## 5 0.9302 nan 0.1000 0.0027
## 6 0.9230 nan 0.1000 0.0024
## 7 0.9172 nan 0.1000 0.0030
## 8 0.9126 nan 0.1000 0.0020
## 9 0.9069 nan 0.1000 0.0024
## 10 0.9045 nan 0.1000 0.0003
## 20 0.8796 nan 0.1000 0.0008
## 40 0.8681 nan 0.1000 -0.0008
## 60 0.8634 nan 0.1000 -0.0004
## 80 0.8608 nan 0.1000 -0.0005
## 100 0.8588 nan 0.1000 0.0002
## 120 0.8563 nan 0.1000 -0.0003
## 140 0.8545 nan 0.1000 -0.0004
## 150 0.8547 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0096
## 2 0.9596 nan 0.1000 0.0064
## 3 0.9462 nan 0.1000 0.0067
## 4 0.9355 nan 0.1000 0.0024
## 5 0.9222 nan 0.1000 0.0040
## 6 0.9139 nan 0.1000 0.0032
## 7 0.9073 nan 0.1000 0.0024
## 8 0.9022 nan 0.1000 0.0018
## 9 0.8965 nan 0.1000 0.0029
## 10 0.8933 nan 0.1000 0.0013
## 20 0.8689 nan 0.1000 -0.0001
## 40 0.8577 nan 0.1000 -0.0028
## 60 0.8478 nan 0.1000 -0.0003
## 80 0.8438 nan 0.1000 -0.0010
## 100 0.8418 nan 0.1000 -0.0002
## 120 0.8396 nan 0.1000 -0.0006
## 140 0.8384 nan 0.1000 -0.0014
## 150 0.8379 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9686 nan 0.1000 0.0091
## 2 0.9543 nan 0.1000 0.0019
## 3 0.9387 nan 0.1000 0.0061
## 4 0.9271 nan 0.1000 0.0045
## 5 0.9175 nan 0.1000 0.0045
## 6 0.9084 nan 0.1000 0.0038
## 7 0.9015 nan 0.1000 0.0035
## 8 0.8949 nan 0.1000 0.0003
## 9 0.8878 nan 0.1000 0.0013
## 10 0.8842 nan 0.1000 0.0008
## 20 0.8592 nan 0.1000 0.0003
## 40 0.8434 nan 0.1000 -0.0013
## 60 0.8398 nan 0.1000 -0.0012
## 80 0.8379 nan 0.1000 -0.0009
## 100 0.8356 nan 0.1000 -0.0010
## 120 0.8338 nan 0.1000 -0.0011
## 140 0.8324 nan 0.1000 -0.0015
## 150 0.8318 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9724 nan 0.1000 0.0093
## 2 0.9584 nan 0.1000 0.0070
## 3 0.9445 nan 0.1000 0.0063
## 4 0.9310 nan 0.1000 0.0032
## 5 0.9222 nan 0.1000 0.0023
## 6 0.9155 nan 0.1000 0.0012
## 7 0.9092 nan 0.1000 0.0031
## 8 0.9044 nan 0.1000 0.0005
## 9 0.9009 nan 0.1000 0.0002
## 10 0.8941 nan 0.1000 0.0017
## 20 0.8684 nan 0.1000 -0.0003
## 40 0.8571 nan 0.1000 -0.0010
## 60 0.8513 nan 0.1000 -0.0005
## 80 0.8473 nan 0.1000 -0.0008
## 100 0.8470 nan 0.1000 -0.0007
## 120 0.8440 nan 0.1000 -0.0008
## 140 0.8415 nan 0.1000 0.0001
## 150 0.8410 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9763 nan 0.1000 0.0090
## 2 0.9568 nan 0.1000 0.0094
## 3 0.9422 nan 0.1000 0.0076
## 4 0.9303 nan 0.1000 0.0056
## 5 0.9181 nan 0.1000 0.0037
## 6 0.9073 nan 0.1000 0.0012
## 7 0.8989 nan 0.1000 0.0039
## 8 0.8929 nan 0.1000 0.0022
## 9 0.8893 nan 0.1000 0.0006
## 10 0.8867 nan 0.1000 0.0009
## 20 0.8617 nan 0.1000 -0.0013
## 40 0.8486 nan 0.1000 -0.0010
## 60 0.8393 nan 0.1000 -0.0007
## 80 0.8360 nan 0.1000 -0.0010
## 100 0.8337 nan 0.1000 -0.0009
## 120 0.8310 nan 0.1000 -0.0006
## 140 0.8302 nan 0.1000 -0.0010
## 150 0.8300 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9706 nan 0.1000 0.0110
## 2 0.9490 nan 0.1000 0.0048
## 3 0.9333 nan 0.1000 0.0059
## 4 0.9205 nan 0.1000 0.0061
## 5 0.9087 nan 0.1000 0.0028
## 6 0.8997 nan 0.1000 0.0031
## 7 0.8903 nan 0.1000 0.0025
## 8 0.8858 nan 0.1000 -0.0000
## 9 0.8802 nan 0.1000 -0.0007
## 10 0.8755 nan 0.1000 -0.0002
## 20 0.8505 nan 0.1000 0.0002
## 40 0.8360 nan 0.1000 -0.0012
## 60 0.8331 nan 0.1000 -0.0006
## 80 0.8302 nan 0.1000 -0.0010
## 100 0.8286 nan 0.1000 -0.0008
## 120 0.8271 nan 0.1000 -0.0018
## 140 0.8269 nan 0.1000 -0.0006
## 150 0.8258 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9772 nan 0.1000 0.0068
## 2 0.9610 nan 0.1000 0.0068
## 3 0.9501 nan 0.1000 0.0028
## 4 0.9404 nan 0.1000 0.0047
## 5 0.9292 nan 0.1000 0.0044
## 6 0.9207 nan 0.1000 0.0029
## 7 0.9121 nan 0.1000 0.0035
## 8 0.9062 nan 0.1000 0.0016
## 9 0.9018 nan 0.1000 0.0009
## 10 0.8958 nan 0.1000 0.0024
## 20 0.8653 nan 0.1000 0.0002
## 40 0.8524 nan 0.1000 -0.0002
## 60 0.8479 nan 0.1000 -0.0007
## 80 0.8448 nan 0.1000 -0.0001
## 100 0.8398 nan 0.1000 -0.0005
## 120 0.8374 nan 0.1000 -0.0004
## 140 0.8360 nan 0.1000 -0.0008
## 150 0.8351 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9738 nan 0.1000 0.0102
## 2 0.9514 nan 0.1000 0.0072
## 3 0.9395 nan 0.1000 0.0065
## 4 0.9281 nan 0.1000 0.0056
## 5 0.9149 nan 0.1000 0.0028
## 6 0.9070 nan 0.1000 0.0035
## 7 0.8986 nan 0.1000 0.0034
## 8 0.8931 nan 0.1000 0.0027
## 9 0.8875 nan 0.1000 0.0026
## 10 0.8805 nan 0.1000 0.0026
## 20 0.8585 nan 0.1000 -0.0005
## 40 0.8357 nan 0.1000 -0.0004
## 60 0.8299 nan 0.1000 -0.0013
## 80 0.8257 nan 0.1000 -0.0008
## 100 0.8227 nan 0.1000 -0.0010
## 120 0.8201 nan 0.1000 -0.0016
## 140 0.8189 nan 0.1000 -0.0015
## 150 0.8176 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9681 nan 0.1000 0.0106
## 2 0.9488 nan 0.1000 0.0073
## 3 0.9334 nan 0.1000 0.0057
## 4 0.9191 nan 0.1000 0.0061
## 5 0.9123 nan 0.1000 0.0021
## 6 0.9028 nan 0.1000 0.0046
## 7 0.8930 nan 0.1000 0.0028
## 8 0.8864 nan 0.1000 0.0010
## 9 0.8801 nan 0.1000 0.0008
## 10 0.8750 nan 0.1000 0.0014
## 20 0.8489 nan 0.1000 -0.0009
## 40 0.8293 nan 0.1000 -0.0010
## 60 0.8234 nan 0.1000 -0.0004
## 80 0.8214 nan 0.1000 -0.0009
## 100 0.8180 nan 0.1000 -0.0012
## 120 0.8162 nan 0.1000 -0.0006
## 140 0.8145 nan 0.1000 -0.0021
## 150 0.8152 nan 0.1000 -0.0023
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9766 nan 0.1000 0.0091
## 2 0.9631 nan 0.1000 0.0063
## 3 0.9502 nan 0.1000 0.0064
## 4 0.9406 nan 0.1000 0.0057
## 5 0.9293 nan 0.1000 0.0045
## 6 0.9238 nan 0.1000 0.0021
## 7 0.9157 nan 0.1000 0.0029
## 8 0.9083 nan 0.1000 0.0029
## 9 0.9017 nan 0.1000 0.0035
## 10 0.8967 nan 0.1000 0.0015
## 20 0.8726 nan 0.1000 -0.0006
## 40 0.8515 nan 0.1000 -0.0013
## 60 0.8457 nan 0.1000 -0.0004
## 80 0.8447 nan 0.1000 -0.0005
## 100 0.8424 nan 0.1000 -0.0005
## 120 0.8416 nan 0.1000 -0.0003
## 140 0.8393 nan 0.1000 -0.0002
## 150 0.8386 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9706 nan 0.1000 0.0106
## 2 0.9533 nan 0.1000 0.0077
## 3 0.9369 nan 0.1000 0.0053
## 4 0.9239 nan 0.1000 0.0067
## 5 0.9151 nan 0.1000 0.0004
## 6 0.9090 nan 0.1000 0.0018
## 7 0.8996 nan 0.1000 0.0036
## 8 0.8936 nan 0.1000 0.0027
## 9 0.8870 nan 0.1000 0.0020
## 10 0.8837 nan 0.1000 0.0009
## 20 0.8579 nan 0.1000 -0.0013
## 40 0.8426 nan 0.1000 -0.0004
## 60 0.8378 nan 0.1000 -0.0012
## 80 0.8341 nan 0.1000 -0.0010
## 100 0.8322 nan 0.1000 -0.0009
## 120 0.8304 nan 0.1000 -0.0012
## 140 0.8272 nan 0.1000 -0.0014
## 150 0.8274 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9695 nan 0.1000 0.0119
## 2 0.9520 nan 0.1000 0.0079
## 3 0.9365 nan 0.1000 0.0063
## 4 0.9217 nan 0.1000 0.0063
## 5 0.9087 nan 0.1000 0.0053
## 6 0.8987 nan 0.1000 0.0040
## 7 0.8912 nan 0.1000 0.0026
## 8 0.8861 nan 0.1000 0.0011
## 9 0.8800 nan 0.1000 0.0015
## 10 0.8752 nan 0.1000 0.0019
## 20 0.8502 nan 0.1000 -0.0010
## 40 0.8368 nan 0.1000 -0.0009
## 60 0.8314 nan 0.1000 -0.0006
## 80 0.8281 nan 0.1000 -0.0007
## 100 0.8251 nan 0.1000 -0.0019
## 120 0.8248 nan 0.1000 -0.0013
## 140 0.8227 nan 0.1000 -0.0010
## 150 0.8232 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9750 nan 0.1000 0.0076
## 2 0.9643 nan 0.1000 0.0013
## 3 0.9558 nan 0.1000 0.0019
## 4 0.9429 nan 0.1000 0.0064
## 5 0.9347 nan 0.1000 0.0031
## 6 0.9254 nan 0.1000 0.0040
## 7 0.9179 nan 0.1000 0.0032
## 8 0.9106 nan 0.1000 0.0034
## 9 0.9024 nan 0.1000 0.0028
## 10 0.8972 nan 0.1000 0.0009
## 20 0.8671 nan 0.1000 0.0000
## 40 0.8553 nan 0.1000 -0.0004
## 60 0.8520 nan 0.1000 -0.0009
## 80 0.8495 nan 0.1000 -0.0010
## 100 0.8476 nan 0.1000 -0.0001
## 120 0.8449 nan 0.1000 -0.0003
## 140 0.8420 nan 0.1000 -0.0000
## 150 0.8417 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9696 nan 0.1000 0.0084
## 2 0.9512 nan 0.1000 0.0067
## 3 0.9370 nan 0.1000 0.0040
## 4 0.9271 nan 0.1000 0.0050
## 5 0.9167 nan 0.1000 0.0053
## 6 0.9094 nan 0.1000 0.0033
## 7 0.9014 nan 0.1000 0.0016
## 8 0.8952 nan 0.1000 0.0025
## 9 0.8882 nan 0.1000 0.0015
## 10 0.8832 nan 0.1000 0.0013
## 20 0.8590 nan 0.1000 0.0008
## 40 0.8430 nan 0.1000 -0.0011
## 60 0.8372 nan 0.1000 -0.0009
## 80 0.8310 nan 0.1000 -0.0007
## 100 0.8275 nan 0.1000 -0.0017
## 120 0.8258 nan 0.1000 -0.0012
## 140 0.8239 nan 0.1000 -0.0005
## 150 0.8243 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9682 nan 0.1000 0.0108
## 2 0.9526 nan 0.1000 0.0056
## 3 0.9359 nan 0.1000 0.0073
## 4 0.9263 nan 0.1000 0.0041
## 5 0.9137 nan 0.1000 0.0046
## 6 0.9047 nan 0.1000 0.0036
## 7 0.8936 nan 0.1000 0.0034
## 8 0.8882 nan 0.1000 0.0025
## 9 0.8825 nan 0.1000 0.0014
## 10 0.8777 nan 0.1000 0.0013
## 20 0.8540 nan 0.1000 -0.0006
## 40 0.8332 nan 0.1000 -0.0007
## 60 0.8279 nan 0.1000 -0.0013
## 80 0.8240 nan 0.1000 -0.0001
## 100 0.8215 nan 0.1000 -0.0008
## 120 0.8203 nan 0.1000 -0.0011
## 140 0.8195 nan 0.1000 -0.0009
## 150 0.8183 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9791 nan 0.1000 0.0096
## 2 0.9659 nan 0.1000 0.0072
## 3 0.9552 nan 0.1000 0.0042
## 4 0.9412 nan 0.1000 0.0048
## 5 0.9300 nan 0.1000 0.0031
## 6 0.9200 nan 0.1000 0.0024
## 7 0.9153 nan 0.1000 0.0003
## 8 0.9090 nan 0.1000 0.0028
## 9 0.9016 nan 0.1000 0.0006
## 10 0.8959 nan 0.1000 0.0029
## 20 0.8663 nan 0.1000 -0.0008
## 40 0.8538 nan 0.1000 -0.0008
## 60 0.8496 nan 0.1000 -0.0004
## 80 0.8482 nan 0.1000 -0.0006
## 100 0.8470 nan 0.1000 -0.0008
## 120 0.8438 nan 0.1000 -0.0002
## 140 0.8419 nan 0.1000 -0.0003
## 150 0.8416 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9780 nan 0.1000 0.0088
## 2 0.9598 nan 0.1000 0.0088
## 3 0.9444 nan 0.1000 0.0066
## 4 0.9320 nan 0.1000 0.0063
## 5 0.9198 nan 0.1000 0.0057
## 6 0.9076 nan 0.1000 0.0030
## 7 0.8999 nan 0.1000 0.0028
## 8 0.8920 nan 0.1000 0.0027
## 9 0.8874 nan 0.1000 0.0024
## 10 0.8817 nan 0.1000 0.0023
## 20 0.8576 nan 0.1000 -0.0007
## 40 0.8469 nan 0.1000 -0.0005
## 60 0.8384 nan 0.1000 -0.0004
## 80 0.8330 nan 0.1000 -0.0012
## 100 0.8296 nan 0.1000 -0.0007
## 120 0.8292 nan 0.1000 -0.0006
## 140 0.8278 nan 0.1000 -0.0020
## 150 0.8270 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9715 nan 0.1000 0.0124
## 2 0.9552 nan 0.1000 0.0087
## 3 0.9425 nan 0.1000 0.0048
## 4 0.9279 nan 0.1000 0.0059
## 5 0.9163 nan 0.1000 0.0045
## 6 0.9060 nan 0.1000 0.0038
## 7 0.8956 nan 0.1000 0.0035
## 8 0.8897 nan 0.1000 0.0014
## 9 0.8838 nan 0.1000 0.0018
## 10 0.8781 nan 0.1000 0.0007
## 20 0.8494 nan 0.1000 -0.0009
## 40 0.8332 nan 0.1000 -0.0013
## 60 0.8300 nan 0.1000 -0.0007
## 80 0.8293 nan 0.1000 -0.0009
## 100 0.8255 nan 0.1000 -0.0007
## 120 0.8236 nan 0.1000 -0.0014
## 140 0.8231 nan 0.1000 -0.0008
## 150 0.8228 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9770 nan 0.1000 0.0088
## 2 0.9649 nan 0.1000 0.0063
## 3 0.9508 nan 0.1000 0.0071
## 4 0.9416 nan 0.1000 0.0043
## 5 0.9321 nan 0.1000 0.0051
## 6 0.9214 nan 0.1000 0.0033
## 7 0.9133 nan 0.1000 0.0034
## 8 0.9061 nan 0.1000 0.0034
## 9 0.9001 nan 0.1000 -0.0003
## 10 0.8962 nan 0.1000 0.0018
## 20 0.8707 nan 0.1000 -0.0003
## 40 0.8521 nan 0.1000 0.0001
## 60 0.8460 nan 0.1000 -0.0018
## 80 0.8445 nan 0.1000 -0.0019
## 100 0.8418 nan 0.1000 -0.0004
## 120 0.8403 nan 0.1000 -0.0004
## 140 0.8381 nan 0.1000 -0.0003
## 150 0.8378 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9751 nan 0.1000 0.0115
## 2 0.9556 nan 0.1000 0.0092
## 3 0.9380 nan 0.1000 0.0068
## 4 0.9257 nan 0.1000 0.0055
## 5 0.9152 nan 0.1000 0.0044
## 6 0.9057 nan 0.1000 0.0047
## 7 0.8974 nan 0.1000 0.0029
## 8 0.8910 nan 0.1000 0.0015
## 9 0.8862 nan 0.1000 0.0018
## 10 0.8827 nan 0.1000 0.0013
## 20 0.8520 nan 0.1000 -0.0002
## 40 0.8364 nan 0.1000 -0.0007
## 60 0.8297 nan 0.1000 -0.0008
## 80 0.8249 nan 0.1000 -0.0010
## 100 0.8223 nan 0.1000 -0.0014
## 120 0.8200 nan 0.1000 -0.0006
## 140 0.8189 nan 0.1000 -0.0011
## 150 0.8180 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9689 nan 0.1000 0.0095
## 2 0.9477 nan 0.1000 0.0095
## 3 0.9314 nan 0.1000 0.0044
## 4 0.9172 nan 0.1000 0.0066
## 5 0.9066 nan 0.1000 0.0041
## 6 0.8976 nan 0.1000 0.0038
## 7 0.8901 nan 0.1000 0.0032
## 8 0.8833 nan 0.1000 0.0023
## 9 0.8780 nan 0.1000 0.0010
## 10 0.8738 nan 0.1000 0.0006
## 20 0.8463 nan 0.1000 -0.0007
## 40 0.8279 nan 0.1000 -0.0010
## 60 0.8239 nan 0.1000 -0.0025
## 80 0.8193 nan 0.1000 -0.0011
## 100 0.8177 nan 0.1000 -0.0011
## 120 0.8168 nan 0.1000 -0.0013
## 140 0.8153 nan 0.1000 -0.0006
## 150 0.8146 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9788 nan 0.1000 0.0089
## 2 0.9618 nan 0.1000 0.0084
## 3 0.9482 nan 0.1000 0.0069
## 4 0.9382 nan 0.1000 0.0054
## 5 0.9239 nan 0.1000 0.0031
## 6 0.9176 nan 0.1000 0.0020
## 7 0.9088 nan 0.1000 0.0034
## 8 0.9019 nan 0.1000 0.0027
## 9 0.8955 nan 0.1000 0.0026
## 10 0.8929 nan 0.1000 0.0007
## 20 0.8621 nan 0.1000 0.0003
## 40 0.8485 nan 0.1000 -0.0006
## 60 0.8460 nan 0.1000 -0.0006
## 80 0.8416 nan 0.1000 -0.0004
## 100 0.8397 nan 0.1000 -0.0005
## 120 0.8368 nan 0.1000 -0.0005
## 140 0.8355 nan 0.1000 -0.0003
## 150 0.8348 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9679 nan 0.1000 0.0100
## 2 0.9485 nan 0.1000 0.0082
## 3 0.9319 nan 0.1000 0.0068
## 4 0.9206 nan 0.1000 0.0051
## 5 0.9080 nan 0.1000 0.0051
## 6 0.8986 nan 0.1000 0.0039
## 7 0.8905 nan 0.1000 0.0015
## 8 0.8838 nan 0.1000 0.0035
## 9 0.8780 nan 0.1000 0.0023
## 10 0.8734 nan 0.1000 0.0017
## 20 0.8511 nan 0.1000 -0.0001
## 40 0.8404 nan 0.1000 -0.0007
## 60 0.8341 nan 0.1000 -0.0005
## 80 0.8300 nan 0.1000 -0.0011
## 100 0.8272 nan 0.1000 -0.0004
## 120 0.8254 nan 0.1000 -0.0013
## 140 0.8230 nan 0.1000 -0.0007
## 150 0.8228 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9628 nan 0.1000 0.0105
## 2 0.9427 nan 0.1000 0.0089
## 3 0.9338 nan 0.1000 0.0044
## 4 0.9196 nan 0.1000 0.0048
## 5 0.9062 nan 0.1000 0.0045
## 6 0.8967 nan 0.1000 0.0036
## 7 0.8898 nan 0.1000 0.0018
## 8 0.8845 nan 0.1000 0.0006
## 9 0.8785 nan 0.1000 0.0011
## 10 0.8731 nan 0.1000 0.0015
## 20 0.8477 nan 0.1000 -0.0007
## 40 0.8354 nan 0.1000 -0.0009
## 60 0.8289 nan 0.1000 -0.0004
## 80 0.8240 nan 0.1000 -0.0007
## 100 0.8218 nan 0.1000 -0.0006
## 120 0.8209 nan 0.1000 -0.0008
## 140 0.8195 nan 0.1000 -0.0034
## 150 0.8183 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9758 nan 0.1000 0.0093
## 2 0.9565 nan 0.1000 0.0080
## 3 0.9484 nan 0.1000 0.0025
## 4 0.9367 nan 0.1000 0.0051
## 5 0.9242 nan 0.1000 0.0044
## 6 0.9146 nan 0.1000 0.0038
## 7 0.9074 nan 0.1000 0.0030
## 8 0.9012 nan 0.1000 0.0028
## 9 0.8959 nan 0.1000 0.0027
## 10 0.8916 nan 0.1000 0.0021
## 20 0.8618 nan 0.1000 0.0012
## 40 0.8488 nan 0.1000 -0.0003
## 60 0.8431 nan 0.1000 -0.0003
## 80 0.8407 nan 0.1000 -0.0007
## 100 0.8385 nan 0.1000 -0.0001
## 120 0.8366 nan 0.1000 -0.0015
## 140 0.8342 nan 0.1000 -0.0005
## 150 0.8335 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9760 nan 0.1000 0.0108
## 2 0.9566 nan 0.1000 0.0101
## 3 0.9411 nan 0.1000 0.0077
## 4 0.9261 nan 0.1000 0.0058
## 5 0.9143 nan 0.1000 0.0053
## 6 0.9036 nan 0.1000 0.0040
## 7 0.8958 nan 0.1000 0.0030
## 8 0.8901 nan 0.1000 0.0031
## 9 0.8826 nan 0.1000 0.0012
## 10 0.8798 nan 0.1000 0.0002
## 20 0.8519 nan 0.1000 0.0006
## 40 0.8373 nan 0.1000 -0.0008
## 60 0.8324 nan 0.1000 -0.0010
## 80 0.8272 nan 0.1000 -0.0005
## 100 0.8229 nan 0.1000 -0.0015
## 120 0.8218 nan 0.1000 -0.0009
## 140 0.8214 nan 0.1000 -0.0008
## 150 0.8204 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9665 nan 0.1000 0.0125
## 2 0.9446 nan 0.1000 0.0095
## 3 0.9287 nan 0.1000 0.0045
## 4 0.9140 nan 0.1000 0.0058
## 5 0.9017 nan 0.1000 0.0056
## 6 0.8930 nan 0.1000 0.0037
## 7 0.8859 nan 0.1000 0.0019
## 8 0.8803 nan 0.1000 0.0018
## 9 0.8746 nan 0.1000 0.0011
## 10 0.8707 nan 0.1000 -0.0003
## 20 0.8443 nan 0.1000 -0.0008
## 40 0.8293 nan 0.1000 -0.0012
## 60 0.8222 nan 0.1000 -0.0012
## 80 0.8197 nan 0.1000 -0.0011
## 100 0.8177 nan 0.1000 -0.0011
## 120 0.8169 nan 0.1000 -0.0007
## 140 0.8154 nan 0.1000 -0.0007
## 150 0.8146 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9803 nan 0.1000 0.0093
## 2 0.9660 nan 0.1000 0.0081
## 3 0.9501 nan 0.1000 0.0058
## 4 0.9363 nan 0.1000 0.0048
## 5 0.9290 nan 0.1000 0.0033
## 6 0.9230 nan 0.1000 0.0011
## 7 0.9130 nan 0.1000 0.0043
## 8 0.9055 nan 0.1000 0.0034
## 9 0.9009 nan 0.1000 0.0009
## 10 0.8979 nan 0.1000 0.0000
## 20 0.8680 nan 0.1000 -0.0002
## 40 0.8529 nan 0.1000 -0.0006
## 60 0.8502 nan 0.1000 -0.0008
## 80 0.8470 nan 0.1000 -0.0001
## 100 0.8449 nan 0.1000 -0.0006
## 120 0.8435 nan 0.1000 -0.0008
## 140 0.8425 nan 0.1000 -0.0002
## 150 0.8418 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9750 nan 0.1000 0.0128
## 2 0.9561 nan 0.1000 0.0089
## 3 0.9416 nan 0.1000 0.0067
## 4 0.9280 nan 0.1000 0.0056
## 5 0.9163 nan 0.1000 0.0056
## 6 0.9048 nan 0.1000 0.0026
## 7 0.8970 nan 0.1000 0.0017
## 8 0.8905 nan 0.1000 0.0026
## 9 0.8845 nan 0.1000 0.0024
## 10 0.8798 nan 0.1000 0.0017
## 20 0.8574 nan 0.1000 -0.0012
## 40 0.8426 nan 0.1000 -0.0006
## 60 0.8391 nan 0.1000 -0.0014
## 80 0.8344 nan 0.1000 -0.0011
## 100 0.8334 nan 0.1000 -0.0008
## 120 0.8315 nan 0.1000 -0.0005
## 140 0.8312 nan 0.1000 -0.0013
## 150 0.8303 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9742 nan 0.1000 0.0092
## 2 0.9553 nan 0.1000 0.0092
## 3 0.9365 nan 0.1000 0.0075
## 4 0.9237 nan 0.1000 0.0054
## 5 0.9111 nan 0.1000 0.0039
## 6 0.8979 nan 0.1000 0.0028
## 7 0.8901 nan 0.1000 0.0032
## 8 0.8829 nan 0.1000 0.0028
## 9 0.8754 nan 0.1000 0.0019
## 10 0.8702 nan 0.1000 0.0001
## 20 0.8477 nan 0.1000 -0.0012
## 40 0.8399 nan 0.1000 -0.0008
## 60 0.8369 nan 0.1000 -0.0009
## 80 0.8323 nan 0.1000 -0.0020
## 100 0.8306 nan 0.1000 -0.0014
## 120 0.8302 nan 0.1000 -0.0015
## 140 0.8288 nan 0.1000 -0.0007
## 150 0.8292 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9714 nan 0.1000 0.0114
## 2 0.9577 nan 0.1000 0.0074
## 3 0.9441 nan 0.1000 0.0069
## 4 0.9315 nan 0.1000 0.0054
## 5 0.9215 nan 0.1000 0.0042
## 6 0.9120 nan 0.1000 0.0043
## 7 0.9034 nan 0.1000 0.0022
## 8 0.8969 nan 0.1000 0.0027
## 9 0.8884 nan 0.1000 0.0018
## 10 0.8839 nan 0.1000 0.0014
## 20 0.8573 nan 0.1000 -0.0004
## 40 0.8441 nan 0.1000 -0.0010
## 60 0.8389 nan 0.1000 -0.0007
## 80 0.8351 nan 0.1000 -0.0003
## 100 0.8332 nan 0.1000 -0.0004
## 120 0.8309 nan 0.1000 -0.0016
## 140 0.8300 nan 0.1000 -0.0001
## 150 0.8291 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9712 nan 0.1000 0.0100
## 2 0.9519 nan 0.1000 0.0094
## 3 0.9405 nan 0.1000 0.0042
## 4 0.9253 nan 0.1000 0.0052
## 5 0.9125 nan 0.1000 0.0057
## 6 0.9000 nan 0.1000 0.0040
## 7 0.8919 nan 0.1000 0.0035
## 8 0.8848 nan 0.1000 0.0029
## 9 0.8794 nan 0.1000 0.0022
## 10 0.8737 nan 0.1000 0.0016
## 20 0.8477 nan 0.1000 -0.0007
## 40 0.8373 nan 0.1000 -0.0015
## 60 0.8281 nan 0.1000 -0.0001
## 80 0.8252 nan 0.1000 -0.0016
## 100 0.8239 nan 0.1000 -0.0017
## 120 0.8226 nan 0.1000 -0.0003
## 140 0.8218 nan 0.1000 -0.0015
## 150 0.8207 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9645 nan 0.1000 0.0119
## 2 0.9448 nan 0.1000 0.0100
## 3 0.9308 nan 0.1000 0.0068
## 4 0.9183 nan 0.1000 0.0060
## 5 0.9042 nan 0.1000 0.0052
## 6 0.8929 nan 0.1000 0.0043
## 7 0.8825 nan 0.1000 0.0030
## 8 0.8769 nan 0.1000 0.0006
## 9 0.8708 nan 0.1000 0.0018
## 10 0.8644 nan 0.1000 0.0019
## 20 0.8407 nan 0.1000 -0.0008
## 40 0.8283 nan 0.1000 -0.0008
## 60 0.8222 nan 0.1000 -0.0041
## 80 0.8199 nan 0.1000 -0.0007
## 100 0.8180 nan 0.1000 -0.0016
## 120 0.8172 nan 0.1000 -0.0015
## 140 0.8152 nan 0.1000 -0.0015
## 150 0.8140 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9790 nan 0.1000 0.0080
## 2 0.9628 nan 0.1000 0.0069
## 3 0.9518 nan 0.1000 0.0048
## 4 0.9412 nan 0.1000 0.0030
## 5 0.9339 nan 0.1000 0.0038
## 6 0.9270 nan 0.1000 0.0018
## 7 0.9197 nan 0.1000 0.0024
## 8 0.9157 nan 0.1000 0.0016
## 9 0.9092 nan 0.1000 0.0009
## 10 0.9038 nan 0.1000 0.0027
## 20 0.8798 nan 0.1000 0.0002
## 40 0.8656 nan 0.1000 0.0004
## 60 0.8609 nan 0.1000 -0.0008
## 80 0.8596 nan 0.1000 -0.0006
## 100 0.8572 nan 0.1000 -0.0005
## 120 0.8551 nan 0.1000 -0.0007
## 140 0.8540 nan 0.1000 -0.0001
## 150 0.8529 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9720 nan 0.1000 0.0097
## 2 0.9565 nan 0.1000 0.0061
## 3 0.9413 nan 0.1000 0.0051
## 4 0.9316 nan 0.1000 0.0039
## 5 0.9229 nan 0.1000 0.0021
## 6 0.9159 nan 0.1000 0.0030
## 7 0.9087 nan 0.1000 0.0033
## 8 0.9006 nan 0.1000 0.0020
## 9 0.8948 nan 0.1000 0.0016
## 10 0.8915 nan 0.1000 0.0011
## 20 0.8694 nan 0.1000 -0.0005
## 40 0.8548 nan 0.1000 -0.0014
## 60 0.8506 nan 0.1000 -0.0013
## 80 0.8478 nan 0.1000 -0.0013
## 100 0.8455 nan 0.1000 -0.0005
## 120 0.8435 nan 0.1000 -0.0007
## 140 0.8431 nan 0.1000 -0.0017
## 150 0.8422 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9736 nan 0.1000 0.0111
## 2 0.9558 nan 0.1000 0.0065
## 3 0.9420 nan 0.1000 0.0069
## 4 0.9297 nan 0.1000 0.0055
## 5 0.9210 nan 0.1000 0.0042
## 6 0.9127 nan 0.1000 0.0030
## 7 0.9053 nan 0.1000 0.0033
## 8 0.8984 nan 0.1000 0.0030
## 9 0.8926 nan 0.1000 0.0010
## 10 0.8872 nan 0.1000 -0.0001
## 20 0.8611 nan 0.1000 -0.0016
## 40 0.8485 nan 0.1000 -0.0004
## 60 0.8450 nan 0.1000 -0.0002
## 80 0.8427 nan 0.1000 -0.0011
## 100 0.8406 nan 0.1000 -0.0014
## 120 0.8404 nan 0.1000 -0.0014
## 140 0.8404 nan 0.1000 -0.0025
## 150 0.8391 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9802 nan 0.1000 0.0074
## 2 0.9704 nan 0.1000 0.0042
## 3 0.9577 nan 0.1000 0.0063
## 4 0.9445 nan 0.1000 0.0046
## 5 0.9343 nan 0.1000 0.0026
## 6 0.9255 nan 0.1000 0.0032
## 7 0.9190 nan 0.1000 0.0022
## 8 0.9137 nan 0.1000 0.0009
## 9 0.9090 nan 0.1000 0.0017
## 10 0.9027 nan 0.1000 0.0028
## 20 0.8726 nan 0.1000 0.0000
## 40 0.8632 nan 0.1000 -0.0003
## 60 0.8564 nan 0.1000 0.0003
## 80 0.8551 nan 0.1000 -0.0011
## 100 0.8525 nan 0.1000 -0.0006
## 120 0.8511 nan 0.1000 -0.0002
## 140 0.8479 nan 0.1000 -0.0004
## 150 0.8472 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9734 nan 0.1000 0.0081
## 2 0.9544 nan 0.1000 0.0060
## 3 0.9404 nan 0.1000 0.0069
## 4 0.9294 nan 0.1000 0.0050
## 5 0.9211 nan 0.1000 0.0041
## 6 0.9111 nan 0.1000 0.0033
## 7 0.9021 nan 0.1000 0.0038
## 8 0.8959 nan 0.1000 0.0026
## 9 0.8906 nan 0.1000 0.0015
## 10 0.8840 nan 0.1000 0.0007
## 20 0.8642 nan 0.1000 -0.0001
## 40 0.8498 nan 0.1000 -0.0007
## 60 0.8440 nan 0.1000 -0.0007
## 80 0.8398 nan 0.1000 -0.0022
## 100 0.8376 nan 0.1000 -0.0010
## 120 0.8367 nan 0.1000 -0.0016
## 140 0.8357 nan 0.1000 -0.0026
## 150 0.8354 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9715 nan 0.1000 0.0085
## 2 0.9533 nan 0.1000 0.0078
## 3 0.9407 nan 0.1000 0.0050
## 4 0.9278 nan 0.1000 0.0052
## 5 0.9178 nan 0.1000 0.0043
## 6 0.9082 nan 0.1000 0.0043
## 7 0.8998 nan 0.1000 0.0040
## 8 0.8933 nan 0.1000 0.0025
## 9 0.8873 nan 0.1000 0.0022
## 10 0.8831 nan 0.1000 0.0010
## 20 0.8570 nan 0.1000 -0.0012
## 40 0.8442 nan 0.1000 -0.0015
## 60 0.8356 nan 0.1000 -0.0010
## 80 0.8335 nan 0.1000 -0.0008
## 100 0.8328 nan 0.1000 -0.0013
## 120 0.8319 nan 0.1000 -0.0017
## 140 0.8320 nan 0.1000 -0.0013
## 150 0.8315 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9776 nan 0.1000 0.0074
## 2 0.9618 nan 0.1000 0.0075
## 3 0.9495 nan 0.1000 0.0046
## 4 0.9394 nan 0.1000 0.0050
## 5 0.9293 nan 0.1000 0.0042
## 6 0.9219 nan 0.1000 0.0035
## 7 0.9158 nan 0.1000 0.0014
## 8 0.9095 nan 0.1000 0.0030
## 9 0.9031 nan 0.1000 0.0027
## 10 0.8987 nan 0.1000 0.0017
## 20 0.8744 nan 0.1000 0.0005
## 40 0.8540 nan 0.1000 0.0000
## 60 0.8488 nan 0.1000 -0.0002
## 80 0.8448 nan 0.1000 -0.0004
## 100 0.8427 nan 0.1000 -0.0006
## 120 0.8413 nan 0.1000 -0.0003
## 140 0.8391 nan 0.1000 -0.0009
## 150 0.8385 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9722 nan 0.1000 0.0101
## 2 0.9537 nan 0.1000 0.0073
## 3 0.9398 nan 0.1000 0.0060
## 4 0.9264 nan 0.1000 0.0060
## 5 0.9169 nan 0.1000 0.0042
## 6 0.9094 nan 0.1000 0.0037
## 7 0.9016 nan 0.1000 0.0029
## 8 0.8942 nan 0.1000 0.0030
## 9 0.8890 nan 0.1000 0.0010
## 10 0.8834 nan 0.1000 0.0014
## 20 0.8597 nan 0.1000 -0.0002
## 40 0.8403 nan 0.1000 -0.0015
## 60 0.8338 nan 0.1000 -0.0007
## 80 0.8284 nan 0.1000 -0.0011
## 100 0.8260 nan 0.1000 -0.0001
## 120 0.8243 nan 0.1000 -0.0007
## 140 0.8221 nan 0.1000 -0.0014
## 150 0.8221 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9722 nan 0.1000 0.0115
## 2 0.9511 nan 0.1000 0.0073
## 3 0.9348 nan 0.1000 0.0073
## 4 0.9249 nan 0.1000 0.0042
## 5 0.9129 nan 0.1000 0.0035
## 6 0.9035 nan 0.1000 0.0030
## 7 0.8958 nan 0.1000 0.0010
## 8 0.8881 nan 0.1000 0.0028
## 9 0.8833 nan 0.1000 0.0012
## 10 0.8783 nan 0.1000 0.0013
## 20 0.8507 nan 0.1000 -0.0010
## 40 0.8332 nan 0.1000 -0.0002
## 60 0.8275 nan 0.1000 -0.0016
## 80 0.8229 nan 0.1000 -0.0017
## 100 0.8198 nan 0.1000 -0.0009
## 120 0.8177 nan 0.1000 -0.0011
## 140 0.8165 nan 0.1000 -0.0019
## 150 0.8159 nan 0.1000 -0.0026
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9754 nan 0.1000 0.0058
## 2 0.9621 nan 0.1000 0.0062
## 3 0.9515 nan 0.1000 0.0052
## 4 0.9403 nan 0.1000 0.0054
## 5 0.9309 nan 0.1000 0.0033
## 6 0.9244 nan 0.1000 0.0035
## 7 0.9166 nan 0.1000 0.0026
## 8 0.9114 nan 0.1000 0.0018
## 9 0.9054 nan 0.1000 0.0022
## 10 0.9012 nan 0.1000 0.0013
## 20 0.8761 nan 0.1000 0.0001
## 40 0.8601 nan 0.1000 -0.0007
## 60 0.8573 nan 0.1000 -0.0004
## 80 0.8562 nan 0.1000 -0.0003
## 100 0.8533 nan 0.1000 -0.0001
## 120 0.8510 nan 0.1000 -0.0003
## 140 0.8483 nan 0.1000 -0.0004
## 150 0.8471 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9725 nan 0.1000 0.0093
## 2 0.9555 nan 0.1000 0.0087
## 3 0.9422 nan 0.1000 0.0072
## 4 0.9286 nan 0.1000 0.0045
## 5 0.9191 nan 0.1000 0.0047
## 6 0.9125 nan 0.1000 0.0031
## 7 0.9035 nan 0.1000 0.0025
## 8 0.8983 nan 0.1000 0.0008
## 9 0.8915 nan 0.1000 0.0022
## 10 0.8868 nan 0.1000 0.0001
## 20 0.8590 nan 0.1000 -0.0009
## 40 0.8449 nan 0.1000 -0.0017
## 60 0.8410 nan 0.1000 -0.0007
## 80 0.8384 nan 0.1000 -0.0008
## 100 0.8361 nan 0.1000 -0.0006
## 120 0.8342 nan 0.1000 -0.0002
## 140 0.8318 nan 0.1000 -0.0013
## 150 0.8311 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9695 nan 0.1000 0.0069
## 2 0.9483 nan 0.1000 0.0091
## 3 0.9338 nan 0.1000 0.0061
## 4 0.9194 nan 0.1000 0.0059
## 5 0.9086 nan 0.1000 0.0042
## 6 0.9014 nan 0.1000 0.0016
## 7 0.8935 nan 0.1000 0.0031
## 8 0.8879 nan 0.1000 0.0022
## 9 0.8835 nan 0.1000 0.0004
## 10 0.8779 nan 0.1000 0.0014
## 20 0.8572 nan 0.1000 -0.0001
## 40 0.8408 nan 0.1000 -0.0013
## 60 0.8341 nan 0.1000 -0.0011
## 80 0.8325 nan 0.1000 -0.0005
## 100 0.8304 nan 0.1000 -0.0018
## 120 0.8298 nan 0.1000 -0.0019
## 140 0.8285 nan 0.1000 -0.0006
## 150 0.8282 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9812 nan 0.1000 0.0089
## 2 0.9657 nan 0.1000 0.0064
## 3 0.9521 nan 0.1000 0.0070
## 4 0.9405 nan 0.1000 0.0030
## 5 0.9308 nan 0.1000 0.0046
## 6 0.9254 nan 0.1000 0.0018
## 7 0.9171 nan 0.1000 0.0026
## 8 0.9111 nan 0.1000 0.0026
## 9 0.9069 nan 0.1000 0.0007
## 10 0.9036 nan 0.1000 0.0009
## 20 0.8676 nan 0.1000 -0.0008
## 40 0.8547 nan 0.1000 0.0001
## 60 0.8505 nan 0.1000 -0.0004
## 80 0.8486 nan 0.1000 -0.0008
## 100 0.8474 nan 0.1000 -0.0004
## 120 0.8442 nan 0.1000 -0.0002
## 140 0.8423 nan 0.1000 -0.0002
## 150 0.8412 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9732 nan 0.1000 0.0106
## 2 0.9540 nan 0.1000 0.0085
## 3 0.9389 nan 0.1000 0.0069
## 4 0.9252 nan 0.1000 0.0060
## 5 0.9137 nan 0.1000 0.0048
## 6 0.9050 nan 0.1000 0.0041
## 7 0.8997 nan 0.1000 0.0012
## 8 0.8922 nan 0.1000 0.0028
## 9 0.8849 nan 0.1000 0.0025
## 10 0.8808 nan 0.1000 0.0012
## 20 0.8566 nan 0.1000 -0.0006
## 40 0.8444 nan 0.1000 -0.0007
## 60 0.8384 nan 0.1000 -0.0002
## 80 0.8358 nan 0.1000 -0.0013
## 100 0.8335 nan 0.1000 -0.0014
## 120 0.8328 nan 0.1000 -0.0007
## 140 0.8314 nan 0.1000 -0.0016
## 150 0.8301 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9779 nan 0.1000 0.0074
## 2 0.9581 nan 0.1000 0.0103
## 3 0.9400 nan 0.1000 0.0089
## 4 0.9255 nan 0.1000 0.0062
## 5 0.9136 nan 0.1000 0.0048
## 6 0.9037 nan 0.1000 0.0038
## 7 0.8937 nan 0.1000 0.0036
## 8 0.8852 nan 0.1000 0.0030
## 9 0.8784 nan 0.1000 0.0007
## 10 0.8724 nan 0.1000 0.0005
## 20 0.8517 nan 0.1000 0.0001
## 40 0.8392 nan 0.1000 -0.0014
## 60 0.8353 nan 0.1000 -0.0007
## 80 0.8323 nan 0.1000 -0.0028
## 100 0.8295 nan 0.1000 -0.0012
## 120 0.8295 nan 0.1000 -0.0009
## 140 0.8278 nan 0.1000 -0.0009
## 150 0.8272 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9742 nan 0.1000 0.0093
## 2 0.9564 nan 0.1000 0.0062
## 3 0.9418 nan 0.1000 0.0059
## 4 0.9304 nan 0.1000 0.0043
## 5 0.9217 nan 0.1000 0.0001
## 6 0.9151 nan 0.1000 0.0023
## 7 0.9065 nan 0.1000 0.0030
## 8 0.9005 nan 0.1000 0.0025
## 9 0.8974 nan 0.1000 -0.0004
## 10 0.8924 nan 0.1000 0.0023
## 20 0.8670 nan 0.1000 0.0003
## 40 0.8558 nan 0.1000 -0.0002
## 60 0.8514 nan 0.1000 -0.0004
## 80 0.8487 nan 0.1000 -0.0008
## 100 0.8463 nan 0.1000 -0.0008
## 120 0.8447 nan 0.1000 -0.0003
## 140 0.8422 nan 0.1000 -0.0003
## 150 0.8408 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9736 nan 0.1000 0.0111
## 2 0.9526 nan 0.1000 0.0086
## 3 0.9392 nan 0.1000 0.0049
## 4 0.9273 nan 0.1000 0.0037
## 5 0.9170 nan 0.1000 0.0039
## 6 0.9087 nan 0.1000 0.0039
## 7 0.9006 nan 0.1000 0.0034
## 8 0.8942 nan 0.1000 0.0029
## 9 0.8898 nan 0.1000 0.0018
## 10 0.8845 nan 0.1000 0.0014
## 20 0.8610 nan 0.1000 -0.0003
## 40 0.8451 nan 0.1000 -0.0006
## 60 0.8413 nan 0.1000 -0.0012
## 80 0.8370 nan 0.1000 -0.0010
## 100 0.8351 nan 0.1000 -0.0004
## 120 0.8350 nan 0.1000 -0.0019
## 140 0.8330 nan 0.1000 -0.0014
## 150 0.8318 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9730 nan 0.1000 0.0112
## 2 0.9541 nan 0.1000 0.0082
## 3 0.9392 nan 0.1000 0.0075
## 4 0.9257 nan 0.1000 0.0052
## 5 0.9147 nan 0.1000 0.0034
## 6 0.9056 nan 0.1000 0.0041
## 7 0.8975 nan 0.1000 0.0030
## 8 0.8896 nan 0.1000 0.0017
## 9 0.8838 nan 0.1000 0.0019
## 10 0.8797 nan 0.1000 0.0012
## 20 0.8552 nan 0.1000 -0.0022
## 40 0.8402 nan 0.1000 -0.0024
## 60 0.8344 nan 0.1000 -0.0005
## 80 0.8318 nan 0.1000 -0.0012
## 100 0.8298 nan 0.1000 -0.0009
## 120 0.8279 nan 0.1000 -0.0016
## 140 0.8291 nan 0.1000 -0.0017
## 150 0.8287 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0105
## 2 0.9540 nan 0.1000 0.0066
## 3 0.9430 nan 0.1000 0.0059
## 4 0.9320 nan 0.1000 0.0022
## 5 0.9219 nan 0.1000 0.0042
## 6 0.9141 nan 0.1000 0.0034
## 7 0.9073 nan 0.1000 0.0034
## 8 0.9033 nan 0.1000 0.0009
## 9 0.8972 nan 0.1000 0.0027
## 10 0.8908 nan 0.1000 0.0021
## 20 0.8669 nan 0.1000 -0.0002
## 40 0.8488 nan 0.1000 -0.0010
## 60 0.8445 nan 0.1000 0.0001
## 80 0.8430 nan 0.1000 -0.0003
## 100 0.8416 nan 0.1000 -0.0005
## 120 0.8393 nan 0.1000 -0.0009
## 140 0.8378 nan 0.1000 -0.0007
## 150 0.8375 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0113
## 2 0.9538 nan 0.1000 0.0101
## 3 0.9388 nan 0.1000 0.0085
## 4 0.9264 nan 0.1000 0.0062
## 5 0.9114 nan 0.1000 0.0050
## 6 0.9028 nan 0.1000 0.0041
## 7 0.8969 nan 0.1000 0.0025
## 8 0.8890 nan 0.1000 0.0031
## 9 0.8815 nan 0.1000 0.0029
## 10 0.8798 nan 0.1000 -0.0003
## 20 0.8536 nan 0.1000 -0.0016
## 40 0.8397 nan 0.1000 -0.0005
## 60 0.8331 nan 0.1000 -0.0011
## 80 0.8296 nan 0.1000 -0.0007
## 100 0.8281 nan 0.1000 -0.0010
## 120 0.8259 nan 0.1000 -0.0008
## 140 0.8250 nan 0.1000 -0.0009
## 150 0.8243 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9699 nan 0.1000 0.0122
## 2 0.9498 nan 0.1000 0.0081
## 3 0.9361 nan 0.1000 0.0075
## 4 0.9231 nan 0.1000 0.0062
## 5 0.9088 nan 0.1000 0.0050
## 6 0.8964 nan 0.1000 0.0036
## 7 0.8889 nan 0.1000 0.0023
## 8 0.8843 nan 0.1000 0.0015
## 9 0.8761 nan 0.1000 0.0016
## 10 0.8703 nan 0.1000 0.0021
## 20 0.8456 nan 0.1000 -0.0004
## 40 0.8309 nan 0.1000 -0.0005
## 60 0.8265 nan 0.1000 -0.0004
## 80 0.8240 nan 0.1000 -0.0014
## 100 0.8229 nan 0.1000 -0.0007
## 120 0.8214 nan 0.1000 -0.0012
## 140 0.8198 nan 0.1000 -0.0020
## 150 0.8198 nan 0.1000 -0.0017
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9755 nan 0.1000 0.0075
## 2 0.9613 nan 0.1000 0.0071
## 3 0.9474 nan 0.1000 0.0052
## 4 0.9378 nan 0.1000 0.0042
## 5 0.9325 nan 0.1000 0.0007
## 6 0.9249 nan 0.1000 0.0042
## 7 0.9168 nan 0.1000 0.0039
## 8 0.9138 nan 0.1000 -0.0001
## 9 0.9096 nan 0.1000 0.0003
## 10 0.9058 nan 0.1000 0.0007
## 20 0.8706 nan 0.1000 -0.0001
## 40 0.8548 nan 0.1000 0.0001
## 60 0.8509 nan 0.1000 -0.0003
## 80 0.8469 nan 0.1000 -0.0007
## 100 0.8438 nan 0.1000 -0.0002
## 120 0.8419 nan 0.1000 -0.0009
## 140 0.8393 nan 0.1000 -0.0010
## 150 0.8398 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9722 nan 0.1000 0.0083
## 2 0.9556 nan 0.1000 0.0090
## 3 0.9401 nan 0.1000 0.0066
## 4 0.9260 nan 0.1000 0.0051
## 5 0.9142 nan 0.1000 0.0047
## 6 0.9077 nan 0.1000 0.0031
## 7 0.9003 nan 0.1000 0.0027
## 8 0.8947 nan 0.1000 0.0021
## 9 0.8891 nan 0.1000 0.0023
## 10 0.8850 nan 0.1000 0.0021
## 20 0.8594 nan 0.1000 -0.0004
## 40 0.8441 nan 0.1000 -0.0004
## 60 0.8361 nan 0.1000 -0.0026
## 80 0.8314 nan 0.1000 -0.0001
## 100 0.8271 nan 0.1000 -0.0005
## 120 0.8271 nan 0.1000 -0.0009
## 140 0.8259 nan 0.1000 -0.0011
## 150 0.8246 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9709 nan 0.1000 0.0117
## 2 0.9486 nan 0.1000 0.0093
## 3 0.9298 nan 0.1000 0.0066
## 4 0.9197 nan 0.1000 0.0052
## 5 0.9086 nan 0.1000 0.0043
## 6 0.9019 nan 0.1000 0.0017
## 7 0.8971 nan 0.1000 0.0022
## 8 0.8907 nan 0.1000 0.0005
## 9 0.8854 nan 0.1000 0.0011
## 10 0.8813 nan 0.1000 0.0020
## 20 0.8567 nan 0.1000 -0.0008
## 40 0.8345 nan 0.1000 -0.0013
## 60 0.8266 nan 0.1000 -0.0011
## 80 0.8249 nan 0.1000 -0.0015
## 100 0.8236 nan 0.1000 -0.0017
## 120 0.8222 nan 0.1000 -0.0010
## 140 0.8213 nan 0.1000 -0.0007
## 150 0.8208 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9713 nan 0.1000 0.0087
## 2 0.9580 nan 0.1000 0.0067
## 3 0.9461 nan 0.1000 0.0060
## 4 0.9359 nan 0.1000 0.0051
## 5 0.9271 nan 0.1000 0.0033
## 6 0.9232 nan 0.1000 -0.0003
## 7 0.9131 nan 0.1000 0.0027
## 8 0.9070 nan 0.1000 0.0024
## 9 0.9011 nan 0.1000 0.0022
## 10 0.8951 nan 0.1000 0.0028
## 20 0.8618 nan 0.1000 0.0009
## 40 0.8494 nan 0.1000 -0.0008
## 60 0.8454 nan 0.1000 -0.0007
## 80 0.8411 nan 0.1000 -0.0003
## 100 0.8376 nan 0.1000 -0.0005
## 120 0.8358 nan 0.1000 -0.0003
## 140 0.8340 nan 0.1000 -0.0006
## 150 0.8335 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9741 nan 0.1000 0.0106
## 2 0.9481 nan 0.1000 0.0076
## 3 0.9315 nan 0.1000 0.0057
## 4 0.9199 nan 0.1000 0.0044
## 5 0.9129 nan 0.1000 0.0026
## 6 0.9032 nan 0.1000 0.0044
## 7 0.8961 nan 0.1000 0.0029
## 8 0.8887 nan 0.1000 0.0020
## 9 0.8860 nan 0.1000 -0.0002
## 10 0.8829 nan 0.1000 -0.0000
## 20 0.8554 nan 0.1000 -0.0010
## 40 0.8393 nan 0.1000 -0.0009
## 60 0.8338 nan 0.1000 -0.0006
## 80 0.8293 nan 0.1000 -0.0018
## 100 0.8262 nan 0.1000 -0.0005
## 120 0.8238 nan 0.1000 -0.0014
## 140 0.8210 nan 0.1000 -0.0010
## 150 0.8195 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9672 nan 0.1000 0.0090
## 2 0.9496 nan 0.1000 0.0077
## 3 0.9312 nan 0.1000 0.0085
## 4 0.9176 nan 0.1000 0.0052
## 5 0.9072 nan 0.1000 0.0044
## 6 0.8984 nan 0.1000 0.0048
## 7 0.8915 nan 0.1000 0.0023
## 8 0.8849 nan 0.1000 0.0016
## 9 0.8792 nan 0.1000 0.0012
## 10 0.8766 nan 0.1000 0.0003
## 20 0.8467 nan 0.1000 -0.0016
## 40 0.8292 nan 0.1000 -0.0007
## 60 0.8213 nan 0.1000 -0.0016
## 80 0.8193 nan 0.1000 -0.0013
## 100 0.8164 nan 0.1000 -0.0012
## 120 0.8162 nan 0.1000 -0.0007
## 140 0.8157 nan 0.1000 -0.0009
## 150 0.8153 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9787 nan 0.1000 0.0080
## 2 0.9627 nan 0.1000 0.0071
## 3 0.9498 nan 0.1000 0.0067
## 4 0.9400 nan 0.1000 0.0050
## 5 0.9316 nan 0.1000 0.0044
## 6 0.9223 nan 0.1000 0.0030
## 7 0.9138 nan 0.1000 0.0028
## 8 0.9074 nan 0.1000 0.0023
## 9 0.9044 nan 0.1000 0.0009
## 10 0.8977 nan 0.1000 0.0032
## 20 0.8684 nan 0.1000 0.0011
## 40 0.8544 nan 0.1000 -0.0003
## 60 0.8478 nan 0.1000 -0.0001
## 80 0.8437 nan 0.1000 -0.0013
## 100 0.8412 nan 0.1000 -0.0004
## 120 0.8400 nan 0.1000 -0.0014
## 140 0.8367 nan 0.1000 -0.0004
## 150 0.8362 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9703 nan 0.1000 0.0089
## 2 0.9515 nan 0.1000 0.0085
## 3 0.9370 nan 0.1000 0.0061
## 4 0.9262 nan 0.1000 0.0044
## 5 0.9137 nan 0.1000 0.0049
## 6 0.9060 nan 0.1000 0.0031
## 7 0.8980 nan 0.1000 0.0027
## 8 0.8926 nan 0.1000 0.0004
## 9 0.8855 nan 0.1000 0.0027
## 10 0.8814 nan 0.1000 0.0008
## 20 0.8558 nan 0.1000 -0.0001
## 40 0.8398 nan 0.1000 -0.0010
## 60 0.8339 nan 0.1000 -0.0004
## 80 0.8301 nan 0.1000 -0.0000
## 100 0.8283 nan 0.1000 -0.0006
## 120 0.8259 nan 0.1000 -0.0003
## 140 0.8238 nan 0.1000 -0.0012
## 150 0.8239 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9712 nan 0.1000 0.0118
## 2 0.9520 nan 0.1000 0.0087
## 3 0.9339 nan 0.1000 0.0074
## 4 0.9203 nan 0.1000 0.0038
## 5 0.9079 nan 0.1000 0.0045
## 6 0.9009 nan 0.1000 0.0040
## 7 0.8940 nan 0.1000 0.0012
## 8 0.8874 nan 0.1000 0.0017
## 9 0.8822 nan 0.1000 0.0010
## 10 0.8774 nan 0.1000 0.0013
## 20 0.8506 nan 0.1000 -0.0001
## 40 0.8302 nan 0.1000 -0.0007
## 60 0.8263 nan 0.1000 -0.0009
## 80 0.8221 nan 0.1000 -0.0010
## 100 0.8215 nan 0.1000 -0.0009
## 120 0.8208 nan 0.1000 -0.0005
## 140 0.8200 nan 0.1000 -0.0012
## 150 0.8195 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9753 nan 0.1000 0.0087
## 2 0.9609 nan 0.1000 0.0076
## 3 0.9490 nan 0.1000 0.0060
## 4 0.9347 nan 0.1000 0.0032
## 5 0.9241 nan 0.1000 0.0040
## 6 0.9163 nan 0.1000 0.0027
## 7 0.9098 nan 0.1000 0.0025
## 8 0.9061 nan 0.1000 0.0016
## 9 0.9004 nan 0.1000 0.0025
## 10 0.8963 nan 0.1000 0.0015
## 20 0.8712 nan 0.1000 0.0003
## 40 0.8569 nan 0.1000 -0.0003
## 60 0.8528 nan 0.1000 -0.0004
## 80 0.8507 nan 0.1000 -0.0008
## 100 0.8489 nan 0.1000 -0.0001
## 120 0.8472 nan 0.1000 -0.0002
## 140 0.8463 nan 0.1000 -0.0002
## 150 0.8453 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9736 nan 0.1000 0.0095
## 2 0.9580 nan 0.1000 0.0076
## 3 0.9435 nan 0.1000 0.0068
## 4 0.9315 nan 0.1000 0.0056
## 5 0.9199 nan 0.1000 0.0053
## 6 0.9099 nan 0.1000 0.0022
## 7 0.9030 nan 0.1000 0.0038
## 8 0.8967 nan 0.1000 0.0030
## 9 0.8901 nan 0.1000 0.0024
## 10 0.8857 nan 0.1000 0.0015
## 20 0.8611 nan 0.1000 -0.0003
## 40 0.8497 nan 0.1000 -0.0006
## 60 0.8427 nan 0.1000 -0.0004
## 80 0.8382 nan 0.1000 -0.0023
## 100 0.8364 nan 0.1000 -0.0005
## 120 0.8346 nan 0.1000 -0.0009
## 140 0.8333 nan 0.1000 -0.0009
## 150 0.8325 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9751 nan 0.1000 0.0117
## 2 0.9569 nan 0.1000 0.0095
## 3 0.9386 nan 0.1000 0.0071
## 4 0.9236 nan 0.1000 0.0060
## 5 0.9133 nan 0.1000 0.0038
## 6 0.9031 nan 0.1000 0.0028
## 7 0.8952 nan 0.1000 0.0021
## 8 0.8876 nan 0.1000 0.0025
## 9 0.8825 nan 0.1000 0.0005
## 10 0.8783 nan 0.1000 0.0001
## 20 0.8546 nan 0.1000 -0.0007
## 40 0.8421 nan 0.1000 -0.0011
## 60 0.8368 nan 0.1000 -0.0013
## 80 0.8328 nan 0.1000 -0.0007
## 100 0.8314 nan 0.1000 -0.0013
## 120 0.8295 nan 0.1000 -0.0015
## 140 0.8293 nan 0.1000 -0.0014
## 150 0.8288 nan 0.1000 -0.0019
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9845 nan 0.1000 0.0066
## 2 0.9700 nan 0.1000 0.0062
## 3 0.9580 nan 0.1000 0.0049
## 4 0.9482 nan 0.1000 0.0040
## 5 0.9404 nan 0.1000 0.0023
## 6 0.9322 nan 0.1000 0.0039
## 7 0.9270 nan 0.1000 0.0010
## 8 0.9245 nan 0.1000 0.0005
## 9 0.9167 nan 0.1000 0.0025
## 10 0.9114 nan 0.1000 0.0026
## 20 0.8816 nan 0.1000 0.0007
## 40 0.8642 nan 0.1000 -0.0005
## 60 0.8604 nan 0.1000 -0.0003
## 80 0.8589 nan 0.1000 -0.0001
## 100 0.8567 nan 0.1000 -0.0004
## 120 0.8545 nan 0.1000 -0.0008
## 140 0.8527 nan 0.1000 -0.0006
## 150 0.8521 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9778 nan 0.1000 0.0108
## 2 0.9594 nan 0.1000 0.0091
## 3 0.9464 nan 0.1000 0.0045
## 4 0.9339 nan 0.1000 0.0042
## 5 0.9256 nan 0.1000 0.0040
## 6 0.9179 nan 0.1000 0.0038
## 7 0.9092 nan 0.1000 0.0032
## 8 0.9018 nan 0.1000 0.0029
## 9 0.8962 nan 0.1000 0.0019
## 10 0.8907 nan 0.1000 0.0008
## 20 0.8737 nan 0.1000 -0.0001
## 40 0.8537 nan 0.1000 -0.0010
## 60 0.8493 nan 0.1000 -0.0010
## 80 0.8445 nan 0.1000 -0.0005
## 100 0.8433 nan 0.1000 -0.0010
## 120 0.8415 nan 0.1000 -0.0016
## 140 0.8401 nan 0.1000 -0.0009
## 150 0.8402 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9806 nan 0.1000 0.0079
## 2 0.9595 nan 0.1000 0.0084
## 3 0.9448 nan 0.1000 0.0063
## 4 0.9331 nan 0.1000 0.0043
## 5 0.9207 nan 0.1000 0.0044
## 6 0.9138 nan 0.1000 0.0022
## 7 0.9058 nan 0.1000 0.0021
## 8 0.8990 nan 0.1000 0.0024
## 9 0.8934 nan 0.1000 0.0010
## 10 0.8908 nan 0.1000 -0.0015
## 20 0.8639 nan 0.1000 -0.0012
## 40 0.8527 nan 0.1000 -0.0019
## 60 0.8445 nan 0.1000 -0.0029
## 80 0.8430 nan 0.1000 -0.0036
## 100 0.8416 nan 0.1000 -0.0014
## 120 0.8401 nan 0.1000 -0.0009
## 140 0.8392 nan 0.1000 -0.0009
## 150 0.8396 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9785 nan 0.1000 0.0070
## 2 0.9628 nan 0.1000 0.0074
## 3 0.9509 nan 0.1000 0.0054
## 4 0.9391 nan 0.1000 0.0051
## 5 0.9294 nan 0.1000 0.0040
## 6 0.9232 nan 0.1000 0.0026
## 7 0.9143 nan 0.1000 0.0041
## 8 0.9085 nan 0.1000 -0.0012
## 9 0.9030 nan 0.1000 0.0024
## 10 0.8987 nan 0.1000 0.0019
## 20 0.8704 nan 0.1000 -0.0004
## 40 0.8541 nan 0.1000 -0.0004
## 60 0.8496 nan 0.1000 -0.0011
## 80 0.8465 nan 0.1000 -0.0001
## 100 0.8448 nan 0.1000 -0.0005
## 120 0.8434 nan 0.1000 -0.0004
## 140 0.8407 nan 0.1000 -0.0001
## 150 0.8401 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9728 nan 0.1000 0.0111
## 2 0.9523 nan 0.1000 0.0078
## 3 0.9367 nan 0.1000 0.0067
## 4 0.9273 nan 0.1000 0.0032
## 5 0.9171 nan 0.1000 0.0051
## 6 0.9070 nan 0.1000 0.0037
## 7 0.9012 nan 0.1000 0.0008
## 8 0.8935 nan 0.1000 0.0031
## 9 0.8874 nan 0.1000 0.0027
## 10 0.8819 nan 0.1000 0.0014
## 20 0.8585 nan 0.1000 0.0007
## 40 0.8411 nan 0.1000 -0.0009
## 60 0.8346 nan 0.1000 -0.0021
## 80 0.8321 nan 0.1000 -0.0009
## 100 0.8284 nan 0.1000 -0.0012
## 120 0.8276 nan 0.1000 -0.0009
## 140 0.8269 nan 0.1000 -0.0009
## 150 0.8273 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9702 nan 0.1000 0.0104
## 2 0.9476 nan 0.1000 0.0092
## 3 0.9326 nan 0.1000 0.0069
## 4 0.9205 nan 0.1000 0.0049
## 5 0.9110 nan 0.1000 0.0039
## 6 0.9039 nan 0.1000 0.0016
## 7 0.8943 nan 0.1000 0.0037
## 8 0.8883 nan 0.1000 0.0007
## 9 0.8828 nan 0.1000 -0.0000
## 10 0.8784 nan 0.1000 0.0018
## 20 0.8508 nan 0.1000 -0.0000
## 40 0.8338 nan 0.1000 -0.0009
## 60 0.8295 nan 0.1000 -0.0013
## 80 0.8273 nan 0.1000 -0.0021
## 100 0.8265 nan 0.1000 -0.0016
## 120 0.8249 nan 0.1000 -0.0036
## 140 0.8234 nan 0.1000 -0.0016
## 150 0.8233 nan 0.1000 -0.0017
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9782 nan 0.1000 0.0090
## 2 0.9634 nan 0.1000 0.0064
## 3 0.9477 nan 0.1000 0.0050
## 4 0.9374 nan 0.1000 0.0045
## 5 0.9300 nan 0.1000 0.0024
## 6 0.9198 nan 0.1000 0.0047
## 7 0.9113 nan 0.1000 0.0034
## 8 0.9050 nan 0.1000 0.0018
## 9 0.9005 nan 0.1000 0.0009
## 10 0.8980 nan 0.1000 0.0003
## 20 0.8672 nan 0.1000 0.0012
## 40 0.8538 nan 0.1000 -0.0005
## 60 0.8505 nan 0.1000 -0.0008
## 80 0.8481 nan 0.1000 -0.0000
## 100 0.8464 nan 0.1000 -0.0008
## 120 0.8443 nan 0.1000 -0.0003
## 140 0.8433 nan 0.1000 -0.0005
## 150 0.8419 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9708 nan 0.1000 0.0119
## 2 0.9513 nan 0.1000 0.0077
## 3 0.9324 nan 0.1000 0.0081
## 4 0.9200 nan 0.1000 0.0055
## 5 0.9104 nan 0.1000 0.0050
## 6 0.9026 nan 0.1000 0.0012
## 7 0.8948 nan 0.1000 0.0027
## 8 0.8881 nan 0.1000 0.0026
## 9 0.8826 nan 0.1000 0.0017
## 10 0.8771 nan 0.1000 0.0021
## 20 0.8547 nan 0.1000 -0.0000
## 40 0.8446 nan 0.1000 -0.0031
## 60 0.8400 nan 0.1000 -0.0002
## 80 0.8358 nan 0.1000 -0.0000
## 100 0.8313 nan 0.1000 -0.0006
## 120 0.8310 nan 0.1000 -0.0004
## 140 0.8299 nan 0.1000 -0.0005
## 150 0.8284 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9730 nan 0.1000 0.0122
## 2 0.9511 nan 0.1000 0.0091
## 3 0.9336 nan 0.1000 0.0074
## 4 0.9210 nan 0.1000 0.0055
## 5 0.9078 nan 0.1000 0.0027
## 6 0.8988 nan 0.1000 0.0045
## 7 0.8907 nan 0.1000 0.0014
## 8 0.8842 nan 0.1000 0.0010
## 9 0.8791 nan 0.1000 0.0000
## 10 0.8754 nan 0.1000 0.0014
## 20 0.8526 nan 0.1000 -0.0002
## 40 0.8376 nan 0.1000 -0.0003
## 60 0.8335 nan 0.1000 -0.0014
## 80 0.8299 nan 0.1000 -0.0008
## 100 0.8291 nan 0.1000 -0.0014
## 120 0.8276 nan 0.1000 -0.0006
## 140 0.8264 nan 0.1000 -0.0007
## 150 0.8270 nan 0.1000 -0.0022
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9788 nan 0.1000 0.0100
## 2 0.9624 nan 0.1000 0.0081
## 3 0.9485 nan 0.1000 0.0053
## 4 0.9382 nan 0.1000 0.0050
## 5 0.9270 nan 0.1000 0.0048
## 6 0.9198 nan 0.1000 0.0032
## 7 0.9106 nan 0.1000 0.0025
## 8 0.9015 nan 0.1000 0.0023
## 9 0.8939 nan 0.1000 0.0012
## 10 0.8901 nan 0.1000 0.0018
## 20 0.8661 nan 0.1000 -0.0006
## 40 0.8502 nan 0.1000 -0.0004
## 60 0.8468 nan 0.1000 -0.0003
## 80 0.8418 nan 0.1000 -0.0002
## 100 0.8384 nan 0.1000 -0.0004
## 120 0.8382 nan 0.1000 -0.0007
## 140 0.8368 nan 0.1000 -0.0004
## 150 0.8367 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9707 nan 0.1000 0.0092
## 2 0.9538 nan 0.1000 0.0090
## 3 0.9365 nan 0.1000 0.0061
## 4 0.9252 nan 0.1000 0.0059
## 5 0.9139 nan 0.1000 0.0057
## 6 0.9045 nan 0.1000 0.0044
## 7 0.8952 nan 0.1000 0.0031
## 8 0.8878 nan 0.1000 0.0033
## 9 0.8800 nan 0.1000 0.0016
## 10 0.8745 nan 0.1000 0.0019
## 20 0.8520 nan 0.1000 0.0002
## 40 0.8369 nan 0.1000 -0.0015
## 60 0.8311 nan 0.1000 -0.0005
## 80 0.8269 nan 0.1000 -0.0008
## 100 0.8255 nan 0.1000 -0.0011
## 120 0.8232 nan 0.1000 -0.0007
## 140 0.8226 nan 0.1000 -0.0014
## 150 0.8220 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9695 nan 0.1000 0.0133
## 2 0.9503 nan 0.1000 0.0092
## 3 0.9323 nan 0.1000 0.0076
## 4 0.9169 nan 0.1000 0.0056
## 5 0.9035 nan 0.1000 0.0044
## 6 0.8957 nan 0.1000 0.0019
## 7 0.8867 nan 0.1000 0.0030
## 8 0.8810 nan 0.1000 0.0023
## 9 0.8738 nan 0.1000 0.0027
## 10 0.8687 nan 0.1000 0.0004
## 20 0.8440 nan 0.1000 -0.0006
## 40 0.8292 nan 0.1000 -0.0015
## 60 0.8238 nan 0.1000 -0.0006
## 80 0.8202 nan 0.1000 -0.0014
## 100 0.8209 nan 0.1000 -0.0005
## 120 0.8196 nan 0.1000 -0.0014
## 140 0.8188 nan 0.1000 -0.0017
## 150 0.8184 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9794 nan 0.1000 0.0075
## 2 0.9596 nan 0.1000 0.0067
## 3 0.9488 nan 0.1000 0.0047
## 4 0.9395 nan 0.1000 0.0040
## 5 0.9295 nan 0.1000 0.0030
## 6 0.9227 nan 0.1000 0.0025
## 7 0.9181 nan 0.1000 0.0017
## 8 0.9129 nan 0.1000 0.0011
## 9 0.9088 nan 0.1000 0.0007
## 10 0.9035 nan 0.1000 0.0024
## 20 0.8800 nan 0.1000 0.0001
## 40 0.8653 nan 0.1000 0.0000
## 60 0.8619 nan 0.1000 -0.0001
## 80 0.8585 nan 0.1000 -0.0005
## 100 0.8573 nan 0.1000 -0.0002
## 120 0.8546 nan 0.1000 -0.0003
## 140 0.8533 nan 0.1000 -0.0000
## 150 0.8526 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9744 nan 0.1000 0.0087
## 2 0.9556 nan 0.1000 0.0078
## 3 0.9429 nan 0.1000 0.0051
## 4 0.9314 nan 0.1000 0.0051
## 5 0.9214 nan 0.1000 0.0026
## 6 0.9120 nan 0.1000 0.0041
## 7 0.9061 nan 0.1000 0.0028
## 8 0.9015 nan 0.1000 0.0012
## 9 0.8962 nan 0.1000 0.0018
## 10 0.8904 nan 0.1000 0.0023
## 20 0.8718 nan 0.1000 0.0005
## 40 0.8554 nan 0.1000 0.0004
## 60 0.8479 nan 0.1000 -0.0010
## 80 0.8458 nan 0.1000 -0.0012
## 100 0.8421 nan 0.1000 -0.0009
## 120 0.8403 nan 0.1000 -0.0008
## 140 0.8385 nan 0.1000 -0.0015
## 150 0.8375 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9723 nan 0.1000 0.0102
## 2 0.9519 nan 0.1000 0.0072
## 3 0.9394 nan 0.1000 0.0066
## 4 0.9271 nan 0.1000 0.0045
## 5 0.9172 nan 0.1000 0.0042
## 6 0.9072 nan 0.1000 0.0043
## 7 0.9011 nan 0.1000 0.0011
## 8 0.8969 nan 0.1000 0.0011
## 9 0.8917 nan 0.1000 0.0004
## 10 0.8868 nan 0.1000 0.0013
## 20 0.8626 nan 0.1000 -0.0007
## 40 0.8451 nan 0.1000 -0.0013
## 60 0.8389 nan 0.1000 -0.0012
## 80 0.8365 nan 0.1000 -0.0020
## 100 0.8348 nan 0.1000 -0.0022
## 120 0.8331 nan 0.1000 -0.0013
## 140 0.8326 nan 0.1000 -0.0016
## 150 0.8328 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9786 nan 0.1000 0.0081
## 2 0.9601 nan 0.1000 0.0075
## 3 0.9502 nan 0.1000 0.0050
## 4 0.9391 nan 0.1000 0.0050
## 5 0.9282 nan 0.1000 0.0034
## 6 0.9234 nan 0.1000 0.0017
## 7 0.9163 nan 0.1000 0.0036
## 8 0.9103 nan 0.1000 0.0026
## 9 0.9045 nan 0.1000 0.0026
## 10 0.9025 nan 0.1000 0.0001
## 20 0.8755 nan 0.1000 -0.0002
## 40 0.8618 nan 0.1000 -0.0003
## 60 0.8589 nan 0.1000 -0.0005
## 80 0.8568 nan 0.1000 -0.0001
## 100 0.8537 nan 0.1000 -0.0003
## 120 0.8502 nan 0.1000 -0.0023
## 140 0.8483 nan 0.1000 -0.0003
## 150 0.8467 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9737 nan 0.1000 0.0093
## 2 0.9553 nan 0.1000 0.0079
## 3 0.9402 nan 0.1000 0.0044
## 4 0.9263 nan 0.1000 0.0027
## 5 0.9178 nan 0.1000 0.0019
## 6 0.9103 nan 0.1000 0.0025
## 7 0.9041 nan 0.1000 0.0022
## 8 0.8985 nan 0.1000 0.0020
## 9 0.8939 nan 0.1000 0.0017
## 10 0.8891 nan 0.1000 0.0021
## 20 0.8650 nan 0.1000 -0.0017
## 40 0.8474 nan 0.1000 -0.0008
## 60 0.8421 nan 0.1000 -0.0004
## 80 0.8382 nan 0.1000 -0.0003
## 100 0.8353 nan 0.1000 -0.0007
## 120 0.8336 nan 0.1000 -0.0006
## 140 0.8330 nan 0.1000 -0.0014
## 150 0.8327 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9725 nan 0.1000 0.0105
## 2 0.9554 nan 0.1000 0.0088
## 3 0.9399 nan 0.1000 0.0050
## 4 0.9288 nan 0.1000 0.0064
## 5 0.9169 nan 0.1000 0.0059
## 6 0.9084 nan 0.1000 0.0037
## 7 0.8993 nan 0.1000 0.0033
## 8 0.8911 nan 0.1000 0.0008
## 9 0.8855 nan 0.1000 0.0016
## 10 0.8822 nan 0.1000 -0.0007
## 20 0.8552 nan 0.1000 -0.0022
## 40 0.8431 nan 0.1000 -0.0004
## 60 0.8373 nan 0.1000 -0.0017
## 80 0.8340 nan 0.1000 -0.0026
## 100 0.8300 nan 0.1000 -0.0006
## 120 0.8302 nan 0.1000 -0.0022
## 140 0.8287 nan 0.1000 -0.0011
## 150 0.8268 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9749 nan 0.1000 0.0071
## 2 0.9645 nan 0.1000 0.0047
## 3 0.9530 nan 0.1000 0.0021
## 4 0.9409 nan 0.1000 0.0054
## 5 0.9308 nan 0.1000 0.0042
## 6 0.9231 nan 0.1000 0.0024
## 7 0.9168 nan 0.1000 0.0033
## 8 0.9089 nan 0.1000 0.0024
## 9 0.9044 nan 0.1000 0.0019
## 10 0.9019 nan 0.1000 0.0009
## 20 0.8689 nan 0.1000 0.0001
## 40 0.8553 nan 0.1000 -0.0009
## 60 0.8516 nan 0.1000 -0.0008
## 80 0.8491 nan 0.1000 -0.0001
## 100 0.8466 nan 0.1000 -0.0005
## 120 0.8449 nan 0.1000 -0.0014
## 140 0.8432 nan 0.1000 -0.0005
## 150 0.8425 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9736 nan 0.1000 0.0100
## 2 0.9514 nan 0.1000 0.0092
## 3 0.9382 nan 0.1000 0.0061
## 4 0.9240 nan 0.1000 0.0048
## 5 0.9142 nan 0.1000 0.0036
## 6 0.9045 nan 0.1000 0.0041
## 7 0.8957 nan 0.1000 0.0028
## 8 0.8906 nan 0.1000 0.0002
## 9 0.8852 nan 0.1000 -0.0008
## 10 0.8806 nan 0.1000 0.0025
## 20 0.8591 nan 0.1000 -0.0007
## 40 0.8451 nan 0.1000 -0.0034
## 60 0.8394 nan 0.1000 -0.0003
## 80 0.8362 nan 0.1000 -0.0009
## 100 0.8330 nan 0.1000 -0.0008
## 120 0.8321 nan 0.1000 -0.0025
## 140 0.8302 nan 0.1000 -0.0011
## 150 0.8297 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9738 nan 0.1000 0.0087
## 2 0.9573 nan 0.1000 0.0088
## 3 0.9408 nan 0.1000 0.0076
## 4 0.9262 nan 0.1000 0.0057
## 5 0.9164 nan 0.1000 0.0039
## 6 0.9061 nan 0.1000 0.0047
## 7 0.8984 nan 0.1000 0.0025
## 8 0.8932 nan 0.1000 0.0021
## 9 0.8884 nan 0.1000 0.0013
## 10 0.8822 nan 0.1000 0.0018
## 20 0.8521 nan 0.1000 -0.0008
## 40 0.8413 nan 0.1000 -0.0002
## 60 0.8335 nan 0.1000 -0.0013
## 80 0.8312 nan 0.1000 -0.0010
## 100 0.8288 nan 0.1000 -0.0027
## 120 0.8282 nan 0.1000 -0.0013
## 140 0.8258 nan 0.1000 -0.0010
## 150 0.8255 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9828 nan 0.1000 0.0081
## 2 0.9626 nan 0.1000 0.0077
## 3 0.9452 nan 0.1000 0.0049
## 4 0.9352 nan 0.1000 0.0050
## 5 0.9287 nan 0.1000 0.0032
## 6 0.9215 nan 0.1000 0.0033
## 7 0.9147 nan 0.1000 0.0031
## 8 0.9082 nan 0.1000 0.0015
## 9 0.9039 nan 0.1000 0.0009
## 10 0.8973 nan 0.1000 0.0014
## 20 0.8706 nan 0.1000 -0.0016
## 40 0.8582 nan 0.1000 -0.0013
## 60 0.8534 nan 0.1000 -0.0006
## 80 0.8507 nan 0.1000 -0.0003
## 100 0.8484 nan 0.1000 -0.0005
## 120 0.8457 nan 0.1000 -0.0006
## 140 0.8437 nan 0.1000 -0.0006
## 150 0.8430 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9752 nan 0.1000 0.0108
## 2 0.9543 nan 0.1000 0.0075
## 3 0.9426 nan 0.1000 0.0063
## 4 0.9297 nan 0.1000 0.0041
## 5 0.9193 nan 0.1000 0.0057
## 6 0.9096 nan 0.1000 0.0046
## 7 0.9034 nan 0.1000 0.0010
## 8 0.8978 nan 0.1000 0.0025
## 9 0.8908 nan 0.1000 0.0014
## 10 0.8851 nan 0.1000 0.0026
## 20 0.8593 nan 0.1000 -0.0002
## 40 0.8466 nan 0.1000 -0.0011
## 60 0.8393 nan 0.1000 -0.0010
## 80 0.8342 nan 0.1000 -0.0013
## 100 0.8313 nan 0.1000 -0.0013
## 120 0.8301 nan 0.1000 -0.0006
## 140 0.8279 nan 0.1000 -0.0005
## 150 0.8272 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0103
## 2 0.9524 nan 0.1000 0.0083
## 3 0.9323 nan 0.1000 0.0049
## 4 0.9214 nan 0.1000 0.0033
## 5 0.9116 nan 0.1000 0.0026
## 6 0.9029 nan 0.1000 0.0043
## 7 0.8947 nan 0.1000 0.0025
## 8 0.8873 nan 0.1000 0.0030
## 9 0.8820 nan 0.1000 0.0015
## 10 0.8768 nan 0.1000 0.0017
## 20 0.8507 nan 0.1000 -0.0005
## 40 0.8352 nan 0.1000 -0.0012
## 60 0.8277 nan 0.1000 -0.0012
## 80 0.8264 nan 0.1000 -0.0020
## 100 0.8246 nan 0.1000 -0.0025
## 120 0.8225 nan 0.1000 -0.0014
## 140 0.8221 nan 0.1000 -0.0021
## 150 0.8222 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9716 nan 0.1000 0.0074
## 2 0.9566 nan 0.1000 0.0070
## 3 0.9485 nan 0.1000 0.0033
## 4 0.9364 nan 0.1000 0.0047
## 5 0.9280 nan 0.1000 0.0035
## 6 0.9203 nan 0.1000 0.0037
## 7 0.9115 nan 0.1000 0.0036
## 8 0.9044 nan 0.1000 0.0026
## 9 0.8997 nan 0.1000 0.0016
## 10 0.8963 nan 0.1000 0.0012
## 20 0.8667 nan 0.1000 0.0004
## 40 0.8535 nan 0.1000 0.0001
## 60 0.8500 nan 0.1000 -0.0009
## 80 0.8488 nan 0.1000 -0.0004
## 100 0.8447 nan 0.1000 -0.0003
## 120 0.8424 nan 0.1000 -0.0010
## 140 0.8397 nan 0.1000 -0.0001
## 150 0.8394 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9722 nan 0.1000 0.0097
## 2 0.9516 nan 0.1000 0.0078
## 3 0.9332 nan 0.1000 0.0062
## 4 0.9206 nan 0.1000 0.0055
## 5 0.9119 nan 0.1000 0.0040
## 6 0.8998 nan 0.1000 0.0023
## 7 0.8944 nan 0.1000 0.0022
## 8 0.8877 nan 0.1000 0.0019
## 9 0.8832 nan 0.1000 0.0015
## 10 0.8801 nan 0.1000 0.0006
## 20 0.8566 nan 0.1000 -0.0003
## 40 0.8431 nan 0.1000 -0.0002
## 60 0.8386 nan 0.1000 -0.0007
## 80 0.8362 nan 0.1000 -0.0015
## 100 0.8328 nan 0.1000 -0.0016
## 120 0.8301 nan 0.1000 -0.0007
## 140 0.8284 nan 0.1000 -0.0018
## 150 0.8280 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9693 nan 0.1000 0.0118
## 2 0.9498 nan 0.1000 0.0081
## 3 0.9334 nan 0.1000 0.0073
## 4 0.9210 nan 0.1000 0.0054
## 5 0.9104 nan 0.1000 0.0033
## 6 0.9002 nan 0.1000 0.0038
## 7 0.8910 nan 0.1000 0.0034
## 8 0.8851 nan 0.1000 0.0011
## 9 0.8799 nan 0.1000 0.0011
## 10 0.8752 nan 0.1000 0.0004
## 20 0.8484 nan 0.1000 0.0002
## 40 0.8357 nan 0.1000 -0.0014
## 60 0.8302 nan 0.1000 -0.0014
## 80 0.8285 nan 0.1000 -0.0020
## 100 0.8234 nan 0.1000 -0.0008
## 120 0.8235 nan 0.1000 -0.0009
## 140 0.8233 nan 0.1000 -0.0009
## 150 0.8220 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9774 nan 0.1000 0.0093
## 2 0.9658 nan 0.1000 0.0072
## 3 0.9544 nan 0.1000 0.0055
## 4 0.9429 nan 0.1000 0.0055
## 5 0.9332 nan 0.1000 0.0008
## 6 0.9276 nan 0.1000 0.0012
## 7 0.9207 nan 0.1000 0.0038
## 8 0.9119 nan 0.1000 0.0024
## 9 0.9050 nan 0.1000 0.0029
## 10 0.9001 nan 0.1000 0.0017
## 20 0.8671 nan 0.1000 0.0011
## 40 0.8572 nan 0.1000 -0.0002
## 60 0.8527 nan 0.1000 -0.0004
## 80 0.8503 nan 0.1000 -0.0002
## 100 0.8496 nan 0.1000 -0.0010
## 120 0.8473 nan 0.1000 -0.0008
## 140 0.8446 nan 0.1000 -0.0005
## 150 0.8444 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9733 nan 0.1000 0.0102
## 2 0.9524 nan 0.1000 0.0084
## 3 0.9400 nan 0.1000 0.0067
## 4 0.9288 nan 0.1000 0.0046
## 5 0.9200 nan 0.1000 0.0049
## 6 0.9113 nan 0.1000 0.0040
## 7 0.9022 nan 0.1000 0.0030
## 8 0.8953 nan 0.1000 0.0025
## 9 0.8892 nan 0.1000 0.0015
## 10 0.8840 nan 0.1000 0.0009
## 20 0.8624 nan 0.1000 -0.0012
## 40 0.8444 nan 0.1000 -0.0009
## 60 0.8392 nan 0.1000 -0.0006
## 80 0.8343 nan 0.1000 -0.0016
## 100 0.8307 nan 0.1000 -0.0010
## 120 0.8303 nan 0.1000 -0.0014
## 140 0.8274 nan 0.1000 -0.0010
## 150 0.8273 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9760 nan 0.1000 0.0108
## 2 0.9528 nan 0.1000 0.0077
## 3 0.9349 nan 0.1000 0.0063
## 4 0.9237 nan 0.1000 0.0032
## 5 0.9124 nan 0.1000 0.0043
## 6 0.9008 nan 0.1000 0.0037
## 7 0.8942 nan 0.1000 0.0001
## 8 0.8843 nan 0.1000 0.0024
## 9 0.8806 nan 0.1000 0.0002
## 10 0.8739 nan 0.1000 0.0015
## 20 0.8494 nan 0.1000 -0.0006
## 40 0.8352 nan 0.1000 -0.0004
## 60 0.8297 nan 0.1000 -0.0004
## 80 0.8265 nan 0.1000 -0.0026
## 100 0.8241 nan 0.1000 -0.0007
## 120 0.8231 nan 0.1000 -0.0020
## 140 0.8209 nan 0.1000 -0.0024
## 150 0.8210 nan 0.1000 -0.0016
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9803 nan 0.1000 0.0091
## 2 0.9633 nan 0.1000 0.0070
## 3 0.9488 nan 0.1000 0.0063
## 4 0.9392 nan 0.1000 0.0051
## 5 0.9270 nan 0.1000 0.0022
## 6 0.9205 nan 0.1000 0.0012
## 7 0.9137 nan 0.1000 0.0031
## 8 0.9085 nan 0.1000 0.0006
## 9 0.9007 nan 0.1000 0.0037
## 10 0.8932 nan 0.1000 0.0030
## 20 0.8646 nan 0.1000 0.0011
## 40 0.8468 nan 0.1000 -0.0003
## 60 0.8407 nan 0.1000 -0.0005
## 80 0.8363 nan 0.1000 -0.0006
## 100 0.8349 nan 0.1000 -0.0001
## 120 0.8334 nan 0.1000 -0.0003
## 140 0.8332 nan 0.1000 -0.0006
## 150 0.8323 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9741 nan 0.1000 0.0104
## 2 0.9526 nan 0.1000 0.0083
## 3 0.9390 nan 0.1000 0.0070
## 4 0.9273 nan 0.1000 0.0057
## 5 0.9137 nan 0.1000 0.0042
## 6 0.9032 nan 0.1000 0.0018
## 7 0.8949 nan 0.1000 0.0031
## 8 0.8885 nan 0.1000 0.0027
## 9 0.8813 nan 0.1000 0.0014
## 10 0.8744 nan 0.1000 0.0017
## 20 0.8520 nan 0.1000 -0.0006
## 40 0.8358 nan 0.1000 0.0001
## 60 0.8303 nan 0.1000 -0.0005
## 80 0.8242 nan 0.1000 -0.0004
## 100 0.8217 nan 0.1000 -0.0005
## 120 0.8216 nan 0.1000 -0.0013
## 140 0.8202 nan 0.1000 -0.0012
## 150 0.8196 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9715 nan 0.1000 0.0114
## 2 0.9515 nan 0.1000 0.0096
## 3 0.9328 nan 0.1000 0.0067
## 4 0.9201 nan 0.1000 0.0063
## 5 0.9072 nan 0.1000 0.0036
## 6 0.8984 nan 0.1000 0.0040
## 7 0.8892 nan 0.1000 0.0035
## 8 0.8807 nan 0.1000 0.0030
## 9 0.8755 nan 0.1000 0.0013
## 10 0.8694 nan 0.1000 0.0020
## 20 0.8421 nan 0.1000 -0.0014
## 40 0.8264 nan 0.1000 -0.0004
## 60 0.8226 nan 0.1000 -0.0019
## 80 0.8178 nan 0.1000 -0.0023
## 100 0.8167 nan 0.1000 -0.0011
## 120 0.8165 nan 0.1000 -0.0013
## 140 0.8132 nan 0.1000 -0.0015
## 150 0.8125 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9801 nan 0.1000 0.0105
## 2 0.9616 nan 0.1000 0.0082
## 3 0.9470 nan 0.1000 0.0070
## 4 0.9365 nan 0.1000 0.0056
## 5 0.9270 nan 0.1000 0.0033
## 6 0.9194 nan 0.1000 0.0026
## 7 0.9129 nan 0.1000 0.0026
## 8 0.9085 nan 0.1000 0.0018
## 9 0.9007 nan 0.1000 0.0027
## 10 0.8961 nan 0.1000 0.0025
## 20 0.8658 nan 0.1000 0.0009
## 40 0.8528 nan 0.1000 -0.0001
## 60 0.8511 nan 0.1000 -0.0004
## 80 0.8480 nan 0.1000 -0.0002
## 100 0.8462 nan 0.1000 -0.0008
## 120 0.8439 nan 0.1000 -0.0010
## 140 0.8431 nan 0.1000 -0.0001
## 150 0.8422 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9758 nan 0.1000 0.0117
## 2 0.9499 nan 0.1000 0.0071
## 3 0.9388 nan 0.1000 0.0052
## 4 0.9266 nan 0.1000 0.0046
## 5 0.9160 nan 0.1000 0.0039
## 6 0.9069 nan 0.1000 0.0040
## 7 0.8996 nan 0.1000 0.0022
## 8 0.8921 nan 0.1000 0.0013
## 9 0.8859 nan 0.1000 0.0028
## 10 0.8802 nan 0.1000 0.0014
## 20 0.8570 nan 0.1000 -0.0002
## 40 0.8446 nan 0.1000 -0.0011
## 60 0.8388 nan 0.1000 -0.0009
## 80 0.8353 nan 0.1000 -0.0009
## 100 0.8334 nan 0.1000 -0.0008
## 120 0.8321 nan 0.1000 -0.0005
## 140 0.8308 nan 0.1000 -0.0010
## 150 0.8305 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9745 nan 0.1000 0.0125
## 2 0.9517 nan 0.1000 0.0105
## 3 0.9322 nan 0.1000 0.0085
## 4 0.9162 nan 0.1000 0.0054
## 5 0.9084 nan 0.1000 0.0023
## 6 0.8974 nan 0.1000 0.0030
## 7 0.8913 nan 0.1000 0.0024
## 8 0.8842 nan 0.1000 0.0019
## 9 0.8779 nan 0.1000 0.0018
## 10 0.8731 nan 0.1000 0.0007
## 20 0.8523 nan 0.1000 -0.0009
## 40 0.8395 nan 0.1000 -0.0024
## 60 0.8345 nan 0.1000 -0.0010
## 80 0.8318 nan 0.1000 -0.0008
## 100 0.8307 nan 0.1000 -0.0017
## 120 0.8290 nan 0.1000 -0.0011
## 140 0.8288 nan 0.1000 -0.0006
## 150 0.8281 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9725 nan 0.1000 0.0096
## 2 0.9591 nan 0.1000 0.0057
## 3 0.9471 nan 0.1000 0.0064
## 4 0.9357 nan 0.1000 0.0053
## 5 0.9258 nan 0.1000 0.0054
## 6 0.9150 nan 0.1000 0.0027
## 7 0.9084 nan 0.1000 0.0017
## 8 0.8999 nan 0.1000 0.0033
## 9 0.8970 nan 0.1000 0.0006
## 10 0.8929 nan 0.1000 0.0010
## 20 0.8600 nan 0.1000 -0.0003
## 40 0.8442 nan 0.1000 -0.0003
## 60 0.8418 nan 0.1000 -0.0005
## 80 0.8384 nan 0.1000 -0.0002
## 100 0.8375 nan 0.1000 -0.0005
## 120 0.8351 nan 0.1000 -0.0004
## 140 0.8342 nan 0.1000 -0.0011
## 150 0.8334 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9752 nan 0.1000 0.0105
## 2 0.9516 nan 0.1000 0.0090
## 3 0.9351 nan 0.1000 0.0090
## 4 0.9181 nan 0.1000 0.0047
## 5 0.9066 nan 0.1000 0.0039
## 6 0.8978 nan 0.1000 0.0045
## 7 0.8882 nan 0.1000 0.0029
## 8 0.8821 nan 0.1000 0.0015
## 9 0.8776 nan 0.1000 0.0010
## 10 0.8716 nan 0.1000 0.0019
## 20 0.8464 nan 0.1000 -0.0005
## 40 0.8387 nan 0.1000 -0.0028
## 60 0.8343 nan 0.1000 -0.0005
## 80 0.8295 nan 0.1000 -0.0011
## 100 0.8266 nan 0.1000 -0.0012
## 120 0.8249 nan 0.1000 -0.0014
## 140 0.8221 nan 0.1000 -0.0005
## 150 0.8211 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9635 nan 0.1000 0.0137
## 2 0.9420 nan 0.1000 0.0071
## 3 0.9239 nan 0.1000 0.0057
## 4 0.9081 nan 0.1000 0.0038
## 5 0.8963 nan 0.1000 0.0031
## 6 0.8893 nan 0.1000 0.0027
## 7 0.8827 nan 0.1000 0.0021
## 8 0.8766 nan 0.1000 0.0016
## 9 0.8711 nan 0.1000 0.0014
## 10 0.8660 nan 0.1000 0.0015
## 20 0.8444 nan 0.1000 -0.0011
## 40 0.8298 nan 0.1000 -0.0015
## 60 0.8240 nan 0.1000 -0.0026
## 80 0.8198 nan 0.1000 -0.0002
## 100 0.8192 nan 0.1000 -0.0023
## 120 0.8181 nan 0.1000 -0.0018
## 140 0.8166 nan 0.1000 -0.0021
## 150 0.8157 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9796 nan 0.1000 0.0088
## 2 0.9618 nan 0.1000 0.0074
## 3 0.9498 nan 0.1000 0.0058
## 4 0.9350 nan 0.1000 0.0067
## 5 0.9255 nan 0.1000 0.0033
## 6 0.9146 nan 0.1000 0.0035
## 7 0.9092 nan 0.1000 0.0017
## 8 0.9018 nan 0.1000 0.0031
## 9 0.8954 nan 0.1000 0.0026
## 10 0.8905 nan 0.1000 0.0017
## 20 0.8600 nan 0.1000 0.0005
## 40 0.8436 nan 0.1000 0.0002
## 60 0.8410 nan 0.1000 -0.0004
## 80 0.8383 nan 0.1000 -0.0002
## 100 0.8370 nan 0.1000 -0.0003
## 120 0.8352 nan 0.1000 -0.0004
## 140 0.8349 nan 0.1000 -0.0002
## 150 0.8339 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9680 nan 0.1000 0.0123
## 2 0.9495 nan 0.1000 0.0090
## 3 0.9335 nan 0.1000 0.0069
## 4 0.9182 nan 0.1000 0.0050
## 5 0.9079 nan 0.1000 0.0051
## 6 0.8984 nan 0.1000 0.0042
## 7 0.8903 nan 0.1000 0.0031
## 8 0.8829 nan 0.1000 0.0027
## 9 0.8763 nan 0.1000 0.0012
## 10 0.8715 nan 0.1000 0.0019
## 20 0.8474 nan 0.1000 -0.0009
## 40 0.8383 nan 0.1000 -0.0008
## 60 0.8339 nan 0.1000 -0.0015
## 80 0.8293 nan 0.1000 -0.0006
## 100 0.8269 nan 0.1000 -0.0025
## 120 0.8255 nan 0.1000 -0.0009
## 140 0.8231 nan 0.1000 -0.0006
## 150 0.8220 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9648 nan 0.1000 0.0109
## 2 0.9438 nan 0.1000 0.0080
## 3 0.9266 nan 0.1000 0.0079
## 4 0.9112 nan 0.1000 0.0063
## 5 0.9035 nan 0.1000 0.0026
## 6 0.8951 nan 0.1000 0.0041
## 7 0.8856 nan 0.1000 0.0003
## 8 0.8796 nan 0.1000 0.0031
## 9 0.8758 nan 0.1000 0.0009
## 10 0.8708 nan 0.1000 0.0012
## 20 0.8444 nan 0.1000 -0.0010
## 40 0.8294 nan 0.1000 -0.0022
## 60 0.8244 nan 0.1000 -0.0004
## 80 0.8210 nan 0.1000 -0.0009
## 100 0.8200 nan 0.1000 -0.0016
## 120 0.8187 nan 0.1000 -0.0008
## 140 0.8185 nan 0.1000 -0.0006
## 150 0.8186 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 0.9782 nan 0.1000 0.0092
## 2 0.9616 nan 0.1000 0.0078
## 3 0.9471 nan 0.1000 0.0053
## 4 0.9343 nan 0.1000 0.0049
## 5 0.9269 nan 0.1000 0.0034
## 6 0.9213 nan 0.1000 0.0030
## 7 0.9152 nan 0.1000 0.0029
## 8 0.9109 nan 0.1000 0.0018
## 9 0.9045 nan 0.1000 0.0028
## 10 0.8990 nan 0.1000 0.0024
## 20 0.8701 nan 0.1000 0.0004
## 40 0.8543 nan 0.1000 -0.0004
## 50 0.8523 nan 0.1000 -0.0002
boost_model
## Stochastic Gradient Boosting
##
## 786 samples
## 1 predictor
## 2 classes: 'bad', 'good'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 707, 708, 708, 707, 707, 708, ...
## Resampling results across tuning parameters:
##
## interaction.depth n.trees ROC Sens Spec
## 1 50 0.7473307 0.11050000 0.9666667
## 1 100 0.7462831 0.10783333 0.9685714
## 1 150 0.7436766 0.09966667 0.9666667
## 2 50 0.7421177 0.10125000 0.9679365
## 2 100 0.7376832 0.09100000 0.9647619
## 2 150 0.7311687 0.10650000 0.9622222
## 3 50 0.7372745 0.10100000 0.9660317
## 3 100 0.7316958 0.10658333 0.9584127
## 3 150 0.7279180 0.10391667 0.9555556
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## Tuning parameter
## 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 50, interaction.depth = 1, shrinkage = 0.1
## and n.minobsinnode = 10.
boost_pred <- predict(boost_model, testset, type = "prob")
boost_measures <- fpr_tpr(p = boost_pred$good, dataset = testset)
plot(boost_measures$fpr, boost_measures$tpr, type = "l", col = 2,
ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)
Here, we also could use some numbers and some visualizations in the caret package to compare three models.
resamp <- resamples(list(logistic = logistic_model, ann = ann_model, boost = boost_model))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
##
## Models: logistic, ann, boost
## Number of resamples: 50
##
## ROC
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## logistic 0.6011905 0.6866319 0.7726025 0.7503095 0.8085979 0.8539683 0
## ann 0.1944444 0.6921627 0.7526455 0.7386409 0.8031746 0.8894180 0
## boost 0.6488095 0.6996528 0.7457672 0.7473307 0.7745536 0.8710317 0
##
## Sens
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## logistic 0 0.0000 0.06666667 0.09083333 0.1333333 0.2500000 0
## ann 0 0.0000 0.06250000 0.03958333 0.0625000 0.1333333 0
## boost 0 0.0625 0.06666667 0.11050000 0.1875000 0.3333333 0
##
## Spec
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## logistic 0.8571429 0.9722222 0.984127 0.9809524 1.000000 1 0
## ann 0.9682540 0.9841270 1.000000 0.9930159 1.000000 1 0
## boost 0.8730159 0.9523810 0.984127 0.9666667 0.984127 1 0
summary(diff(resamp))
##
## Call:
## summary.diff.resamples(object = diff(resamp))
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## ROC
## logistic ann boost
## logistic 0.011669 0.002979
## ann 1 -0.008690
## boost 1 1
##
## Sens
## logistic ann boost
## logistic 0.05125 -0.01967
## ann 0.0004689 -0.07092
## boost 0.7704813 3.76e-05
##
## Spec
## logistic ann boost
## logistic -0.01206 0.01429
## ann 0.01405 0.02635
## boost 0.02712 3.761e-06
# plot the difference between models
dotplot(resamp)
bwplot(resamp)
densityplot(resamp, auto.key = list(columns = 2))
Referenced:
Applied Predictive Modeling
Just record, this article was posted at linkedin, and have 226 views to November 2021.