In before articles about classification model, I often only split the data set, then compare their performance, but if you split the data set again, the components of train set will differ, the test set will differ, at the same time, the performance of the classifier will change.

So, we should repeat split the train set and test set, compute the performance, then summary repeated measures, such as the mean of measure, the standard deviation of measures.

In the same way, in before articles about classification model, I often chose kinds of models which are designed by some default parameters, then compare their performance, and find out some classifier which suit data set better.

Suppose we have chosen some better models by simple split the data set and using some default models, how to compare these classifier in the depth of deeper?

Ok, we want to talk about this question in this article.

However, different train-set or test-set will have different performance.

So, we must split our raw train set many times, each time we compute a measures, in the end, we could have series measures.

Ordinary, we choose 10-fold cross validation method to split data set and tune parameters.

Here, I recommence to use caret package.

The Classification and Regression Training (caret) package by Max Kuhn includes functions to streamline the model training process.

This package also provides a large number of tools for preparing, training, evaluating, and visualizing machine learning models and data.

We still use field goals data set as an example.

In before articles (classification model series II), we get the better models are logistic regression, artificial neural networks, boosting, so we use repeated cross-validation to tune parameters and compare their performance.

We get a series of measures by cross-validation, such as the mean of sensitivity is 0.06, the standard deviation of sensitivity is 0.06, ROC is auc (area under the ROC curve).

We could still tune the cut-off value to get better auc and tpr values.

# load the data set
library(nutshell)
data(field.goals)

# create a new binary variable for dataset
data <- transform(field.goals,
                  play.type = as.factor(ifelse(play.type == "FG good", "good", "bad")))
# head(data)
# summary(data)

###############################
###  split the dataset
###############################

library(caret)
set.seed(1234)
train_index <- createDataPartition(data$play.type, p = .8, list = FALSE)
trainset <- data[train_index, ]
testset <- data[-train_index, ]

###############################
###  compare models
###############################
ctrl <- trainControl(method = "repeatedcv", repeats = 5,
                     summaryFunction = twoClassSummary,
                     classProbs = TRUE,
                     savePredictions = TRUE)
###  tune logistic regression
logistic_model <- train(play.type ~ yards, data = trainset,
                        method = "glm", family = binomial,
                        metric = "Sens",
                        trControl = ctrl)
logistic_model
## Generalized Linear Model 
## 
## 786 samples
##   1 predictor
##   2 classes: 'bad', 'good' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times) 
## Summary of sample sizes: 707, 708, 708, 707, 707, 707, ... 
## Resampling results:
## 
##   ROC        Sens        Spec     
##   0.7503095  0.09083333  0.9809524
logistic_pred <- predict(logistic_model, testset, type = "prob")

fpr_tpr <- function(p, dataset) {
  
  TPR <- rep(0, length(p))
  FPR <- rep(0, length(p))
  for(i in 1 : length(p)){
    p0 <- p[order(p)[i]]
    label_true <- ifelse(dataset$play.type == "good", 1, 0)
    label_pred <- 1 * (p > p0)
    TPR[i] <- sum(label_pred * label_true) / sum(label_true)
    FPR[i] <- sum(label_pred * (1 - label_true)) / sum(1 - label_true)
  }
  list(fpr = FPR, tpr = TPR)
}

# plot logistic regression roc
logic_measures <- fpr_tpr(p = logistic_pred$good, dataset = testset)

plot(logic_measures$fpr, logic_measures$tpr, type = "l", col = 2,
     ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)

Then, we could see the artificial neural network model.

Here, the function will be tune parameters “size” and “decay”, and automatically chose the optimal model by the largest auc value.

The performance nearly the same as logistic regression model after tune cut-off values.

###  tune ann
ann_model <- train(play.type ~ yards, data = trainset,
                   method = "nnet",
                   trControl = ctrl)
## # weights:  4
## initial  value 407.760405 
## iter  10 value 309.916935
## iter  20 value 304.627226
## iter  30 value 304.272741
## iter  40 value 304.138587
## iter  50 value 304.090826
## iter  60 value 304.058485
## iter  70 value 304.049885
## iter  80 value 304.038649
## iter  90 value 304.032579
## iter 100 value 304.026519
## final  value 304.026519 
## stopped after 100 iterations
## # weights:  10
## initial  value 657.307708 
## iter  10 value 351.834960
## iter  20 value 351.248745
## iter  30 value 305.554581
## iter  40 value 304.368818
## iter  50 value 304.178925
## iter  60 value 304.065917
## iter  70 value 304.029034
## iter  80 value 304.017769
## iter  90 value 304.012093
## iter 100 value 304.009131
## final  value 304.009131 
## stopped after 100 iterations
## # weights:  16
## initial  value 605.272447 
## iter  10 value 350.005842
## iter  20 value 305.283257
## iter  30 value 304.057220
## iter  40 value 303.989329
## iter  50 value 303.911388
## iter  60 value 303.381991
## iter  70 value 303.260656
## iter  80 value 303.164386
## iter  90 value 303.122246
## iter 100 value 303.006836
## final  value 303.006836 
## stopped after 100 iterations
## # weights:  4
## initial  value 393.978058 
## final  value 351.951519 
## converged
## # weights:  10
## initial  value 665.158336 
## iter  10 value 350.331763
## iter  20 value 311.253800
## iter  30 value 308.254132
## iter  40 value 307.987057
## iter  50 value 307.669238
## iter  60 value 307.486852
## iter  70 value 307.411112
## final  value 307.403968 
## converged
## # weights:  16
## initial  value 588.995599 
## iter  10 value 323.973694
## iter  20 value 309.971436
## iter  30 value 308.205699
## iter  40 value 307.678290
## iter  50 value 307.314737
## iter  60 value 307.091271
## iter  70 value 306.940668
## iter  80 value 306.865568
## final  value 306.862341 
## converged
## # weights:  4
## initial  value 384.970686 
## final  value 351.835498 
## converged
## # weights:  10
## initial  value 634.973735 
## iter  10 value 332.524127
## iter  20 value 304.904268
## iter  30 value 304.213070
## iter  40 value 304.120898
## iter  50 value 304.094230
## iter  50 value 304.094228
## final  value 304.094228 
## converged
## # weights:  16
## initial  value 495.413958 
## iter  10 value 348.545573
## iter  20 value 305.381516
## iter  30 value 304.099103
## iter  40 value 304.062607
## iter  50 value 304.060972
## final  value 304.059480 
## converged
## # weights:  4
## initial  value 735.333575 
## iter  10 value 343.461183
## iter  20 value 305.482249
## iter  30 value 304.624084
## iter  40 value 304.364367
## iter  50 value 304.294710
## iter  60 value 304.263142
## iter  70 value 304.247873
## iter  80 value 304.232740
## iter  90 value 304.221205
## final  value 304.219374 
## converged
## # weights:  10
## initial  value 748.723861 
## iter  10 value 350.607543
## iter  20 value 304.708992
## iter  30 value 304.243302
## iter  40 value 304.227053
## iter  50 value 304.206768
## iter  60 value 304.189075
## iter  70 value 304.181657
## iter  80 value 304.165050
## iter  90 value 304.158140
## final  value 304.157845 
## converged
## # weights:  16
## initial  value 474.671447 
## iter  10 value 310.873279
## iter  20 value 305.293653
## iter  30 value 304.372958
## iter  40 value 304.275105
## iter  50 value 304.246007
## iter  60 value 304.187824
## final  value 304.185087 
## converged
## # weights:  4
## initial  value 424.619975 
## iter  10 value 353.762654
## iter  20 value 348.534276
## iter  30 value 309.435823
## final  value 308.863570 
## converged
## # weights:  10
## initial  value 448.765249 
## iter  10 value 330.662695
## iter  20 value 308.994013
## iter  30 value 308.262441
## iter  40 value 307.951395
## iter  50 value 307.659043
## iter  60 value 307.614102
## final  value 307.612105 
## converged
## # weights:  16
## initial  value 545.390739 
## iter  10 value 313.630609
## iter  20 value 310.124766
## iter  30 value 308.527706
## iter  40 value 307.960136
## iter  50 value 307.658489
## iter  60 value 307.590441
## final  value 307.588848 
## converged
## # weights:  4
## initial  value 485.477478 
## final  value 353.451780 
## converged
## # weights:  10
## initial  value 453.982967 
## iter  10 value 353.465528
## final  value 353.452390 
## converged
## # weights:  16
## initial  value 723.550904 
## iter  10 value 353.452406
## final  value 353.452373 
## converged
## # weights:  4
## initial  value 635.277599 
## final  value 351.835038 
## converged
## # weights:  10
## initial  value 854.788889 
## iter  10 value 351.835049
## final  value 351.835016 
## converged
## # weights:  16
## initial  value 982.162325 
## final  value 351.834927 
## converged
## # weights:  4
## initial  value 397.983930 
## iter  10 value 326.105050
## iter  20 value 308.618880
## final  value 308.618572 
## converged
## # weights:  10
## initial  value 655.251362 
## iter  10 value 325.270718
## iter  20 value 312.453188
## iter  30 value 309.295341
## final  value 309.273249 
## converged
## # weights:  16
## initial  value 676.591126 
## iter  10 value 348.412754
## iter  20 value 308.877902
## iter  30 value 307.806039
## iter  40 value 307.462387
## iter  50 value 307.304594
## iter  60 value 307.275925
## iter  70 value 307.256361
## final  value 307.255506 
## converged
## # weights:  4
## initial  value 511.403378 
## final  value 351.835635 
## converged
## # weights:  10
## initial  value 444.961850 
## iter  10 value 351.835810
## final  value 351.835718 
## converged
## # weights:  16
## initial  value 355.650179 
## iter  10 value 350.888546
## iter  20 value 308.128990
## iter  30 value 304.470041
## final  value 304.421954 
## converged
## # weights:  4
## initial  value 399.390139 
## final  value 351.835023 
## converged
## # weights:  10
## initial  value 448.310668 
## iter  10 value 351.835035
## final  value 351.835018 
## converged
## # weights:  16
## initial  value 362.495685 
## iter  10 value 305.060029
## iter  20 value 303.941845
## iter  30 value 303.619157
## iter  40 value 303.552377
## iter  50 value 303.492656
## iter  60 value 303.478651
## iter  70 value 303.448239
## iter  80 value 303.351646
## iter  90 value 303.163650
## iter 100 value 302.973360
## final  value 302.973360 
## stopped after 100 iterations
## # weights:  4
## initial  value 489.011504 
## iter  10 value 351.955177
## final  value 351.951683 
## converged
## # weights:  10
## initial  value 421.968775 
## iter  10 value 344.306516
## iter  20 value 308.126023
## iter  30 value 307.400545
## iter  40 value 306.948934
## iter  50 value 306.712399
## iter  60 value 306.669510
## final  value 306.665023 
## converged
## # weights:  16
## initial  value 397.306744 
## iter  10 value 324.997805
## iter  20 value 308.418138
## iter  30 value 307.891716
## iter  40 value 307.454173
## iter  50 value 306.969537
## iter  60 value 306.749786
## iter  70 value 306.648257
## iter  80 value 306.640162
## final  value 306.640158 
## converged
## # weights:  4
## initial  value 568.555454 
## iter  10 value 351.835205
## iter  10 value 351.835205
## final  value 351.835205 
## converged
## # weights:  10
## initial  value 687.698014 
## iter  10 value 318.384816
## iter  20 value 304.087462
## iter  30 value 303.558029
## iter  40 value 303.539750
## final  value 303.533262 
## converged
## # weights:  16
## initial  value 358.878726 
## iter  10 value 325.756020
## iter  20 value 304.445920
## iter  30 value 303.740076
## iter  40 value 303.641723
## iter  50 value 303.537025
## iter  60 value 303.507049
## iter  70 value 303.494213
## final  value 303.492489 
## converged
## # weights:  4
## initial  value 424.628709 
## final  value 353.451594 
## converged
## # weights:  10
## initial  value 731.576748 
## iter  10 value 353.448606
## iter  20 value 346.960264
## iter  30 value 311.499748
## iter  40 value 310.057754
## iter  50 value 309.842833
## final  value 309.764691 
## converged
## # weights:  16
## initial  value 392.605460 
## iter  10 value 342.742225
## iter  20 value 312.105873
## iter  30 value 310.189214
## iter  40 value 309.880199
## iter  50 value 309.825130
## iter  60 value 309.739882
## iter  70 value 309.717153
## iter  80 value 309.709170
## iter  90 value 309.701932
## iter 100 value 309.700481
## final  value 309.700481 
## stopped after 100 iterations
## # weights:  4
## initial  value 573.163019 
## final  value 353.566930 
## converged
## # weights:  10
## initial  value 417.774052 
## iter  10 value 323.451022
## iter  20 value 315.081659
## iter  30 value 314.721726
## final  value 314.721460 
## converged
## # weights:  16
## initial  value 648.112037 
## iter  10 value 353.895088
## iter  20 value 326.788085
## iter  30 value 315.318685
## iter  40 value 314.337454
## iter  50 value 313.559646
## iter  60 value 313.325105
## iter  70 value 313.246026
## iter  80 value 313.225620
## final  value 313.225540 
## converged
## # weights:  4
## initial  value 455.923372 
## final  value 353.452138 
## converged
## # weights:  10
## initial  value 433.326645 
## iter  10 value 353.451810
## final  value 353.451781 
## converged
## # weights:  16
## initial  value 505.497060 
## iter  10 value 353.449870
## iter  20 value 317.277229
## iter  30 value 310.943392
## iter  40 value 309.947337
## iter  50 value 309.824714
## iter  60 value 309.737506
## iter  70 value 308.526485
## iter  80 value 308.280437
## iter  90 value 307.911135
## iter 100 value 307.383707
## final  value 307.383707 
## stopped after 100 iterations
## # weights:  4
## initial  value 596.843376 
## final  value 353.451552 
## converged
## # weights:  10
## initial  value 453.533761 
## iter  10 value 353.451509
## final  value 353.451470 
## converged
## # weights:  16
## initial  value 578.303080 
## iter  10 value 347.147631
## iter  20 value 312.947762
## iter  30 value 311.963127
## iter  40 value 310.976582
## iter  50 value 310.691903
## iter  60 value 310.484031
## iter  70 value 310.377920
## iter  80 value 310.252245
## iter  90 value 310.124426
## iter 100 value 309.930836
## final  value 309.930836 
## stopped after 100 iterations
## # weights:  4
## initial  value 472.293114 
## final  value 353.567161 
## converged
## # weights:  10
## initial  value 375.312743 
## iter  10 value 353.561851
## iter  20 value 353.549095
## final  value 353.549074 
## converged
## # weights:  16
## initial  value 721.843570 
## iter  10 value 350.300331
## iter  20 value 317.006616
## iter  30 value 315.671006
## iter  40 value 314.967535
## iter  50 value 314.767347
## iter  60 value 314.715297
## iter  70 value 314.704398
## final  value 314.704332 
## converged
## # weights:  4
## initial  value 479.367772 
## final  value 353.451775 
## converged
## # weights:  10
## initial  value 423.181956 
## iter  10 value 321.563186
## iter  20 value 312.244470
## iter  30 value 311.890510
## iter  40 value 311.689741
## iter  50 value 310.724913
## iter  60 value 310.601201
## iter  70 value 310.206368
## iter  80 value 309.891611
## iter  90 value 309.644017
## final  value 309.606785 
## converged
## # weights:  16
## initial  value 563.383177 
## iter  10 value 353.452572
## final  value 353.452355 
## converged
## # weights:  4
## initial  value 645.537132 
## final  value 351.835025 
## converged
## # weights:  10
## initial  value 529.559424 
## iter  10 value 351.804858
## iter  20 value 302.525193
## iter  30 value 300.517979
## iter  40 value 300.339561
## iter  50 value 300.268268
## iter  60 value 300.200621
## iter  70 value 300.169649
## iter  80 value 300.145032
## iter  90 value 300.139728
## final  value 300.117648 
## converged
## # weights:  16
## initial  value 592.436467 
## iter  10 value 349.485245
## iter  20 value 301.545366
## iter  30 value 300.488930
## iter  40 value 300.428247
## iter  50 value 300.268575
## iter  60 value 300.200685
## iter  70 value 300.174242
## iter  80 value 300.142262
## iter  90 value 300.135116
## iter 100 value 300.110015
## final  value 300.110015 
## stopped after 100 iterations
## # weights:  4
## initial  value 496.616331 
## final  value 351.951756 
## converged
## # weights:  10
## initial  value 491.032635 
## iter  10 value 349.726980
## iter  20 value 305.264635
## iter  30 value 304.752910
## iter  40 value 304.296345
## iter  50 value 303.912582
## iter  60 value 303.802122
## iter  70 value 303.752248
## final  value 303.751090 
## converged
## # weights:  16
## initial  value 515.464862 
## iter  10 value 345.693467
## iter  20 value 305.157795
## iter  30 value 304.649322
## iter  40 value 304.326202
## iter  50 value 304.193281
## iter  60 value 304.088208
## iter  70 value 304.063651
## final  value 304.062073 
## converged
## # weights:  4
## initial  value 484.893857 
## iter  10 value 351.835270
## iter  10 value 351.835270
## final  value 351.835270 
## converged
## # weights:  10
## initial  value 745.144513 
## iter  10 value 350.767247
## iter  20 value 304.096463
## iter  30 value 300.640229
## iter  40 value 300.427651
## iter  50 value 300.333694
## iter  60 value 300.245862
## iter  70 value 300.237712
## iter  80 value 300.220831
## iter  90 value 300.219295
## final  value 300.218767 
## converged
## # weights:  16
## initial  value 532.970488 
## iter  10 value 348.963668
## iter  20 value 300.713452
## iter  30 value 300.382552
## iter  40 value 300.359623
## iter  50 value 300.240437
## iter  60 value 299.534703
## iter  70 value 298.817395
## iter  80 value 298.492711
## iter  90 value 298.117251
## iter 100 value 297.976743
## final  value 297.976743 
## stopped after 100 iterations
## # weights:  4
## initial  value 743.347655 
## iter  10 value 351.835058
## iter  10 value 351.835057
## final  value 351.835057 
## converged
## # weights:  10
## initial  value 620.293125 
## iter  10 value 351.832715
## iter  20 value 345.343886
## iter  30 value 303.038049
## iter  40 value 301.590701
## iter  50 value 301.385371
## iter  60 value 301.360857
## iter  70 value 301.285446
## iter  80 value 301.254463
## iter  90 value 301.243347
## iter 100 value 301.210705
## final  value 301.210705 
## stopped after 100 iterations
## # weights:  16
## initial  value 436.184964 
## iter  10 value 327.892214
## iter  20 value 301.889876
## iter  30 value 301.492178
## iter  40 value 301.292905
## iter  50 value 300.750108
## iter  60 value 300.189694
## iter  70 value 299.895621
## iter  80 value 299.413324
## iter  90 value 298.745042
## iter 100 value 297.420572
## final  value 297.420572 
## stopped after 100 iterations
## # weights:  4
## initial  value 485.666283 
## final  value 351.951804 
## converged
## # weights:  10
## initial  value 463.923172 
## iter  10 value 351.009038
## iter  20 value 306.698566
## iter  30 value 305.906576
## iter  40 value 305.550408
## iter  50 value 305.120603
## iter  60 value 304.873294
## iter  70 value 304.759550
## iter  80 value 304.748683
## final  value 304.748465 
## converged
## # weights:  16
## initial  value 452.604598 
## iter  10 value 349.972323
## iter  20 value 306.257850
## iter  30 value 305.751550
## iter  40 value 305.389776
## iter  50 value 305.220199
## iter  60 value 305.099865
## iter  70 value 304.985457
## iter  80 value 304.719250
## iter  90 value 304.640656
## iter 100 value 304.620859
## final  value 304.620859 
## stopped after 100 iterations
## # weights:  4
## initial  value 743.382218 
## final  value 351.845835 
## converged
## # weights:  10
## initial  value 527.075900 
## iter  10 value 351.835479
## final  value 351.835455 
## converged
## # weights:  16
## initial  value 864.239359 
## iter  10 value 341.915819
## iter  20 value 302.974497
## iter  30 value 301.178464
## iter  40 value 300.386436
## iter  50 value 300.105213
## iter  60 value 299.771881
## iter  70 value 299.581249
## iter  80 value 299.413650
## iter  90 value 298.781583
## iter 100 value 298.085206
## final  value 298.085206 
## stopped after 100 iterations
## # weights:  4
## initial  value 498.596338 
## iter  10 value 353.450644
## iter  20 value 350.351679
## iter  30 value 312.111105
## iter  40 value 306.079383
## iter  50 value 305.738162
## iter  60 value 305.618524
## iter  70 value 305.571508
## iter  80 value 305.558350
## iter  90 value 305.547557
## iter 100 value 305.537866
## final  value 305.537866 
## stopped after 100 iterations
## # weights:  10
## initial  value 819.004248 
## iter  10 value 333.286030
## iter  20 value 306.753880
## iter  30 value 305.743599
## iter  40 value 305.625298
## iter  50 value 305.544952
## iter  60 value 305.515176
## iter  70 value 305.508751
## final  value 305.496532 
## converged
## # weights:  16
## initial  value 684.367124 
## iter  10 value 337.194692
## iter  20 value 306.649541
## iter  30 value 305.659528
## iter  40 value 305.583489
## iter  50 value 305.559279
## iter  60 value 305.531101
## iter  70 value 305.517508
## iter  80 value 305.503779
## iter  90 value 305.408212
## iter 100 value 305.141876
## final  value 305.141876 
## stopped after 100 iterations
## # weights:  4
## initial  value 515.340525 
## iter  10 value 343.378940
## iter  20 value 310.224161
## final  value 310.059896 
## converged
## # weights:  10
## initial  value 565.026388 
## iter  10 value 353.342732
## iter  20 value 315.680438
## iter  30 value 310.034798
## iter  40 value 309.640541
## iter  50 value 309.446468
## iter  60 value 309.390369
## final  value 309.390128 
## converged
## # weights:  16
## initial  value 1097.366680 
## iter  10 value 401.856579
## iter  20 value 339.611867
## iter  30 value 310.571656
## iter  40 value 309.803153
## iter  50 value 309.646187
## iter  60 value 309.094336
## iter  70 value 308.889943
## iter  80 value 308.795393
## iter  90 value 308.775793
## iter 100 value 308.775383
## final  value 308.775383 
## stopped after 100 iterations
## # weights:  4
## initial  value 499.878030 
## final  value 353.451781 
## converged
## # weights:  10
## initial  value 562.815320 
## final  value 353.451872 
## converged
## # weights:  16
## initial  value 374.681229 
## iter  10 value 343.827506
## iter  20 value 308.494318
## iter  30 value 305.751691
## iter  40 value 305.004876
## iter  50 value 304.175431
## iter  60 value 303.869041
## iter  70 value 303.860084
## iter  80 value 303.844701
## iter  90 value 303.794273
## iter 100 value 303.744366
## final  value 303.744366 
## stopped after 100 iterations
## # weights:  4
## initial  value 735.784515 
## iter  10 value 310.229878
## iter  20 value 307.909477
## iter  30 value 307.696000
## iter  40 value 307.575957
## iter  50 value 307.553555
## iter  60 value 307.544410
## iter  70 value 307.531147
## iter  80 value 307.523727
## iter  90 value 307.517623
## iter 100 value 307.513289
## final  value 307.513289 
## stopped after 100 iterations
## # weights:  10
## initial  value 586.874635 
## iter  10 value 351.835084
## final  value 351.835018 
## converged
## # weights:  16
## initial  value 905.343106 
## iter  10 value 351.834815
## iter  20 value 348.641748
## iter  30 value 307.999166
## iter  40 value 307.535207
## iter  50 value 307.257000
## iter  60 value 306.693942
## iter  70 value 306.110903
## iter  80 value 306.088780
## iter  90 value 306.069082
## iter 100 value 306.048692
## final  value 306.048692 
## stopped after 100 iterations
## # weights:  4
## initial  value 388.683499 
## final  value 351.951744 
## converged
## # weights:  10
## initial  value 498.460498 
## iter  10 value 326.061571
## iter  20 value 311.986431
## iter  30 value 311.429948
## iter  40 value 311.095051
## iter  50 value 310.772414
## iter  60 value 310.621328
## iter  70 value 310.605408
## final  value 310.605401 
## converged
## # weights:  16
## initial  value 440.766095 
## iter  10 value 326.343941
## iter  20 value 311.734050
## iter  30 value 310.638558
## iter  40 value 310.453164
## iter  50 value 310.304772
## iter  60 value 310.246179
## iter  70 value 310.225748
## final  value 310.225353 
## converged
## # weights:  4
## initial  value 543.458468 
## iter  10 value 351.835269
## iter  10 value 351.835269
## final  value 351.835269 
## converged
## # weights:  10
## initial  value 582.821496 
## iter  10 value 343.477808
## iter  20 value 309.423628
## iter  30 value 308.009565
## iter  40 value 307.693516
## iter  50 value 307.629747
## iter  60 value 307.579135
## final  value 307.562701 
## converged
## # weights:  16
## initial  value 437.422388 
## iter  10 value 319.846620
## iter  20 value 308.058067
## iter  30 value 307.740744
## iter  40 value 307.657051
## iter  50 value 307.572628
## iter  60 value 307.549363
## iter  70 value 307.541145
## iter  80 value 307.522792
## iter  90 value 307.460553
## iter 100 value 306.832569
## final  value 306.832569 
## stopped after 100 iterations
## # weights:  4
## initial  value 359.864559 
## iter  10 value 351.835035
## iter  10 value 351.835035
## final  value 351.835035 
## converged
## # weights:  10
## initial  value 565.700042 
## final  value 351.835073 
## converged
## # weights:  16
## initial  value 644.170970 
## iter  10 value 351.798387
## iter  20 value 347.334596
## iter  30 value 308.238735
## iter  40 value 307.526548
## iter  50 value 307.449006
## iter  60 value 307.408890
## iter  70 value 307.352574
## iter  80 value 307.330224
## iter  90 value 307.318712
## iter 100 value 307.314110
## final  value 307.314110 
## stopped after 100 iterations
## # weights:  4
## initial  value 642.281995 
## iter  10 value 322.810015
## iter  20 value 311.757453
## final  value 311.533246 
## converged
## # weights:  10
## initial  value 471.835377 
## iter  10 value 341.122546
## iter  20 value 314.179021
## iter  30 value 311.589001
## iter  40 value 311.104496
## iter  50 value 310.749008
## iter  60 value 310.542008
## iter  70 value 310.449750
## iter  80 value 310.442652
## final  value 310.442488 
## converged
## # weights:  16
## initial  value 711.625146 
## iter  10 value 350.799767
## iter  20 value 314.780748
## iter  30 value 311.264610
## iter  40 value 310.776776
## iter  50 value 310.370149
## iter  60 value 310.189646
## iter  70 value 310.104948
## iter  80 value 310.087170
## iter  90 value 310.085316
## iter  90 value 310.085314
## final  value 310.085314 
## converged
## # weights:  4
## initial  value 403.968568 
## final  value 351.835482 
## converged
## # weights:  10
## initial  value 647.806005 
## iter  10 value 351.835556
## final  value 351.835437 
## converged
## # weights:  16
## initial  value 523.389946 
## iter  10 value 312.783410
## iter  20 value 309.099470
## iter  30 value 307.942834
## iter  40 value 307.600201
## iter  50 value 307.477733
## iter  60 value 307.429305
## iter  70 value 307.411479
## iter  80 value 307.324344
## iter  90 value 306.823942
## iter 100 value 306.543883
## final  value 306.543883 
## stopped after 100 iterations
## # weights:  4
## initial  value 476.148948 
## final  value 351.835031 
## converged
## # weights:  10
## initial  value 760.326081 
## final  value 351.835000 
## converged
## # weights:  16
## initial  value 972.491404 
## iter  10 value 351.518408
## iter  20 value 309.260903
## iter  30 value 307.516102
## iter  40 value 307.391313
## iter  50 value 307.258837
## iter  60 value 307.197217
## iter  70 value 307.158063
## iter  80 value 307.106404
## iter  90 value 306.819826
## iter 100 value 306.689009
## final  value 306.689009 
## stopped after 100 iterations
## # weights:  4
## initial  value 492.091682 
## iter  10 value 339.447244
## iter  20 value 311.313867
## final  value 311.312983 
## converged
## # weights:  10
## initial  value 441.853606 
## iter  10 value 339.849254
## iter  20 value 311.342553
## iter  30 value 310.907255
## iter  40 value 310.547598
## iter  50 value 310.330242
## iter  60 value 310.250000
## final  value 310.248433 
## converged
## # weights:  16
## initial  value 422.361839 
## iter  10 value 331.850911
## iter  20 value 311.679581
## iter  30 value 311.104008
## iter  40 value 310.836974
## iter  50 value 310.666528
## iter  60 value 310.613497
## iter  70 value 310.603449
## final  value 310.603385 
## converged
## # weights:  4
## initial  value 401.270288 
## final  value 351.835323 
## converged
## # weights:  10
## initial  value 435.887244 
## iter  10 value 351.143892
## iter  20 value 321.388205
## iter  30 value 309.505262
## iter  40 value 307.523279
## iter  50 value 307.322572
## iter  60 value 307.221755
## iter  70 value 307.208754
## iter  80 value 307.187881
## final  value 307.187041 
## converged
## # weights:  16
## initial  value 729.414109 
## iter  10 value 351.804011
## iter  20 value 308.702930
## iter  30 value 307.239753
## final  value 307.186294 
## converged
## # weights:  4
## initial  value 433.680756 
## final  value 351.835003 
## converged
## # weights:  10
## initial  value 357.288673 
## iter  10 value 351.835886
## final  value 351.835595 
## converged
## # weights:  16
## initial  value 506.119312 
## iter  10 value 351.094890
## iter  20 value 338.715820
## iter  30 value 312.893420
## iter  40 value 307.693730
## iter  50 value 307.443797
## iter  60 value 307.389368
## iter  70 value 307.370780
## final  value 307.368351 
## converged
## # weights:  4
## initial  value 406.731726 
## final  value 351.951595 
## converged
## # weights:  10
## initial  value 628.782654 
## iter  10 value 342.906006
## iter  20 value 313.195003
## iter  30 value 312.165073
## iter  40 value 311.472844
## iter  50 value 311.180049
## iter  60 value 311.132731
## final  value 311.132574 
## converged
## # weights:  16
## initial  value 568.937962 
## iter  10 value 348.364623
## iter  20 value 312.111592
## iter  30 value 311.681816
## iter  40 value 311.187735
## iter  50 value 310.763943
## iter  60 value 310.486491
## iter  70 value 310.279370
## iter  80 value 310.157193
## iter  90 value 310.096345
## iter 100 value 310.086846
## final  value 310.086846 
## stopped after 100 iterations
## # weights:  4
## initial  value 506.248616 
## iter  10 value 349.638173
## iter  20 value 309.131317
## iter  30 value 307.863222
## iter  40 value 307.603889
## iter  50 value 307.566253
## iter  60 value 307.543340
## iter  70 value 307.520158
## iter  80 value 307.508425
## iter  90 value 307.500828
## iter 100 value 307.496342
## final  value 307.496342 
## stopped after 100 iterations
## # weights:  10
## initial  value 831.886744 
## iter  10 value 345.975343
## iter  20 value 317.065914
## iter  30 value 309.591810
## iter  40 value 307.797659
## iter  50 value 307.590047
## iter  60 value 307.546055
## iter  70 value 307.505814
## iter  80 value 307.499999
## iter  90 value 307.488236
## iter 100 value 307.487159
## final  value 307.487159 
## stopped after 100 iterations
## # weights:  16
## initial  value 842.662416 
## iter  10 value 320.856043
## iter  20 value 308.078473
## iter  30 value 307.350971
## iter  40 value 307.052269
## iter  50 value 306.686399
## iter  60 value 306.457347
## iter  70 value 306.371226
## iter  80 value 306.234629
## iter  90 value 306.042818
## iter 100 value 305.887422
## final  value 305.887422 
## stopped after 100 iterations
## # weights:  4
## initial  value 671.859211 
## final  value 353.451227 
## converged
## # weights:  10
## initial  value 452.369034 
## iter  10 value 353.459621
## iter  20 value 353.451556
## iter  20 value 353.451553
## iter  20 value 353.451553
## final  value 353.451553 
## converged
## # weights:  16
## initial  value 1253.812268 
## final  value 353.451562 
## converged
## # weights:  4
## initial  value 554.365004 
## iter  10 value 354.327356
## iter  20 value 313.366030
## iter  30 value 312.635843
## iter  30 value 312.635840
## iter  30 value 312.635840
## final  value 312.635840 
## converged
## # weights:  10
## initial  value 763.174244 
## iter  10 value 314.304481
## iter  20 value 311.198409
## iter  30 value 310.396464
## iter  40 value 310.064017
## iter  50 value 309.884578
## iter  60 value 309.844476
## iter  70 value 309.841126
## final  value 309.841097 
## converged
## # weights:  16
## initial  value 383.808341 
## iter  10 value 332.871301
## iter  20 value 312.613829
## iter  30 value 311.054564
## iter  40 value 310.451729
## iter  50 value 310.290325
## iter  60 value 310.179346
## iter  70 value 310.130930
## iter  80 value 310.126250
## final  value 310.126237 
## converged
## # weights:  4
## initial  value 579.064629 
## final  value 353.452475 
## converged
## # weights:  10
## initial  value 653.239490 
## iter  10 value 311.845780
## iter  20 value 306.961054
## iter  30 value 306.744262
## iter  40 value 306.692148
## iter  50 value 306.652354
## iter  60 value 306.623285
## iter  70 value 306.551809
## iter  80 value 305.906679
## iter  90 value 305.846001
## iter 100 value 305.664543
## final  value 305.664543 
## stopped after 100 iterations
## # weights:  16
## initial  value 662.936069 
## iter  10 value 353.456105
## iter  20 value 352.945495
## iter  30 value 307.533276
## iter  40 value 306.869549
## iter  50 value 306.744729
## iter  60 value 306.557457
## iter  70 value 305.996759
## iter  80 value 305.675720
## iter  90 value 305.553950
## iter 100 value 305.440413
## final  value 305.440413 
## stopped after 100 iterations
## # weights:  4
## initial  value 613.013037 
## iter  10 value 351.835133
## iter  10 value 351.835133
## final  value 351.835133 
## converged
## # weights:  10
## initial  value 657.729522 
## final  value 351.835033 
## converged
## # weights:  16
## initial  value 578.552934 
## iter  10 value 351.834768
## iter  20 value 330.408526
## iter  30 value 300.554597
## iter  40 value 300.383927
## iter  50 value 300.367982
## iter  60 value 300.293239
## iter  70 value 300.269758
## iter  80 value 300.256777
## final  value 300.239972 
## converged
## # weights:  4
## initial  value 618.843416 
## iter  10 value 351.951567
## final  value 351.951366 
## converged
## # weights:  10
## initial  value 415.954054 
## iter  10 value 349.794004
## iter  20 value 311.810390
## iter  30 value 303.854481
## iter  40 value 303.728425
## iter  50 value 303.675134
## final  value 303.674817 
## converged
## # weights:  16
## initial  value 461.826882 
## iter  10 value 350.474267
## iter  20 value 308.828744
## iter  30 value 305.537201
## final  value 305.385187 
## converged
## # weights:  4
## initial  value 544.818733 
## iter  10 value 348.738558
## iter  20 value 300.992656
## iter  30 value 300.420966
## final  value 300.372816 
## converged
## # weights:  10
## initial  value 420.218645 
## iter  10 value 351.835302
## final  value 351.835286 
## converged
## # weights:  16
## initial  value 359.237886 
## iter  10 value 347.310635
## iter  20 value 301.469256
## iter  30 value 300.321671
## final  value 300.299542 
## converged
## # weights:  4
## initial  value 441.736015 
## iter  10 value 309.635399
## iter  20 value 306.014842
## iter  30 value 305.182942
## iter  40 value 304.899657
## iter  50 value 304.832965
## iter  60 value 304.797208
## iter  70 value 304.772547
## iter  80 value 304.752428
## final  value 304.736540 
## converged
## # weights:  10
## initial  value 383.682591 
## iter  10 value 346.670630
## iter  20 value 305.388924
## iter  30 value 304.813138
## iter  40 value 304.742349
## iter  50 value 304.702091
## iter  60 value 304.542333
## iter  70 value 304.002277
## iter  80 value 303.658985
## iter  90 value 303.184732
## iter 100 value 302.534715
## final  value 302.534715 
## stopped after 100 iterations
## # weights:  16
## initial  value 371.141122 
## iter  10 value 351.835059
## final  value 351.835011 
## converged
## # weights:  4
## initial  value 354.969456 
## final  value 351.951773 
## converged
## # weights:  10
## initial  value 383.069848 
## iter  10 value 313.495008
## iter  20 value 309.323455
## iter  30 value 308.875114
## iter  40 value 308.739691
## iter  50 value 308.715317
## iter  60 value 308.703491
## final  value 308.701865 
## converged
## # weights:  16
## initial  value 378.969977 
## iter  10 value 351.406070
## iter  20 value 310.159526
## iter  30 value 309.156815
## iter  40 value 308.588404
## iter  50 value 308.218021
## iter  60 value 308.089699
## iter  70 value 308.007450
## iter  80 value 307.963569
## iter  90 value 307.963100
## final  value 307.963094 
## converged
## # weights:  4
## initial  value 570.075868 
## iter  10 value 351.835274
## iter  10 value 351.835274
## final  value 351.835274 
## converged
## # weights:  10
## initial  value 766.440901 
## iter  10 value 310.544655
## iter  20 value 305.803274
## iter  30 value 305.193894
## iter  40 value 304.876421
## iter  50 value 304.829678
## iter  60 value 304.789605
## iter  70 value 304.779994
## iter  80 value 304.776710
## final  value 304.776495 
## converged
## # weights:  16
## initial  value 365.968272 
## iter  10 value 341.976501
## iter  20 value 305.578087
## iter  30 value 304.917064
## iter  40 value 304.800313
## iter  50 value 304.771494
## iter  60 value 304.642272
## iter  70 value 304.189122
## iter  80 value 303.787232
## iter  90 value 303.421542
## iter 100 value 303.073568
## final  value 303.073568 
## stopped after 100 iterations
## # weights:  4
## initial  value 407.283871 
## iter  10 value 345.838533
## iter  20 value 306.220900
## iter  30 value 306.014111
## iter  40 value 305.920773
## iter  50 value 305.870330
## iter  60 value 305.848128
## iter  70 value 305.838153
## iter  80 value 305.830856
## iter  90 value 305.825323
## iter 100 value 305.818925
## final  value 305.818925 
## stopped after 100 iterations
## # weights:  10
## initial  value 695.216633 
## iter  10 value 351.835075
## final  value 351.835017 
## converged
## # weights:  16
## initial  value 354.719444 
## iter  10 value 320.079876
## iter  20 value 306.361346
## iter  30 value 305.915072
## iter  40 value 305.851007
## iter  50 value 305.810654
## iter  60 value 305.065665
## iter  70 value 304.951423
## iter  80 value 304.847457
## iter  90 value 304.652188
## iter 100 value 304.455756
## final  value 304.455756 
## stopped after 100 iterations
## # weights:  4
## initial  value 451.214831 
## iter  10 value 352.187543
## final  value 351.951566 
## converged
## # weights:  10
## initial  value 395.478972 
## iter  10 value 351.617749
## iter  20 value 340.771132
## iter  30 value 310.128245
## iter  40 value 309.377369
## iter  50 value 309.291125
## iter  60 value 309.084111
## iter  70 value 309.040335
## iter  80 value 309.032735
## iter  80 value 309.032734
## iter  80 value 309.032734
## final  value 309.032734 
## converged
## # weights:  16
## initial  value 542.998246 
## iter  10 value 352.105898
## iter  20 value 310.814279
## iter  30 value 310.432008
## iter  40 value 309.818658
## iter  50 value 309.610022
## iter  60 value 309.471260
## final  value 309.464525 
## converged
## # weights:  4
## initial  value 517.491206 
## iter  10 value 348.355075
## iter  20 value 310.696504
## iter  30 value 307.869081
## iter  40 value 306.350952
## iter  50 value 306.031928
## iter  60 value 305.942775
## iter  70 value 305.890933
## iter  80 value 305.883074
## iter  90 value 305.874557
## iter  90 value 305.874557
## final  value 305.874557 
## converged
## # weights:  10
## initial  value 390.586542 
## iter  10 value 351.835322
## final  value 351.835315 
## converged
## # weights:  16
## initial  value 352.101020 
## iter  10 value 308.922228
## iter  20 value 306.392861
## iter  30 value 305.885269
## iter  40 value 305.713261
## iter  50 value 304.922807
## iter  60 value 304.636772
## iter  70 value 304.066069
## iter  80 value 303.842059
## iter  90 value 302.899708
## iter 100 value 302.836484
## final  value 302.836484 
## stopped after 100 iterations
## # weights:  4
## initial  value 406.159803 
## final  value 353.451526 
## converged
## # weights:  10
## initial  value 538.802585 
## iter  10 value 353.451596
## final  value 353.451556 
## converged
## # weights:  16
## initial  value 362.774245 
## iter  10 value 350.286676
## iter  20 value 308.247774
## iter  30 value 304.264165
## iter  40 value 303.483986
## iter  50 value 303.397140
## iter  60 value 303.358215
## iter  70 value 303.296075
## iter  80 value 303.282862
## iter  90 value 303.278178
## iter 100 value 303.269128
## final  value 303.269128 
## stopped after 100 iterations
## # weights:  4
## initial  value 500.280177 
## iter  10 value 354.900640
## iter  20 value 344.192117
## iter  30 value 308.408053
## final  value 308.213092 
## converged
## # weights:  10
## initial  value 453.030834 
## iter  10 value 352.078590
## iter  20 value 310.775513
## iter  30 value 308.112675
## iter  40 value 307.876338
## iter  50 value 307.528591
## iter  60 value 307.410530
## iter  70 value 307.389785
## final  value 307.389367 
## converged
## # weights:  16
## initial  value 721.542360 
## iter  10 value 337.549294
## iter  20 value 308.855276
## iter  30 value 308.399577
## iter  40 value 307.465872
## iter  50 value 306.792459
## iter  60 value 306.619021
## iter  70 value 306.531604
## iter  80 value 306.477626
## iter  90 value 306.471489
## iter  90 value 306.471487
## iter  90 value 306.471487
## final  value 306.471487 
## converged
## # weights:  4
## initial  value 653.876840 
## iter  10 value 353.451813
## iter  10 value 353.451813
## final  value 353.451813 
## converged
## # weights:  10
## initial  value 490.649279 
## iter  10 value 353.452170
## final  value 353.452131 
## converged
## # weights:  16
## initial  value 567.633693 
## iter  10 value 345.820607
## iter  20 value 305.601153
## iter  30 value 303.588581
## iter  40 value 303.419073
## iter  50 value 303.391905
## iter  60 value 303.367533
## final  value 303.356398 
## converged
## # weights:  4
## initial  value 434.859412 
## final  value 353.451503 
## converged
## # weights:  10
## initial  value 370.728389 
## iter  10 value 353.451593
## final  value 353.451551 
## converged
## # weights:  16
## initial  value 417.676708 
## iter  10 value 338.953808
## iter  20 value 308.340801
## iter  30 value 306.958597
## iter  40 value 306.778364
## iter  50 value 306.669845
## iter  60 value 306.547692
## iter  70 value 306.528241
## iter  80 value 306.514552
## iter  90 value 306.510171
## iter 100 value 306.486004
## final  value 306.486004 
## stopped after 100 iterations
## # weights:  4
## initial  value 453.622427 
## iter  10 value 353.580634
## final  value 353.567255 
## converged
## # weights:  10
## initial  value 580.410680 
## iter  10 value 353.696744
## iter  20 value 353.633242
## iter  30 value 353.549671
## final  value 353.549383 
## converged
## # weights:  16
## initial  value 422.118437 
## iter  10 value 339.096195
## iter  20 value 312.131360
## iter  30 value 310.503129
## iter  40 value 309.958330
## iter  50 value 309.840819
## iter  60 value 309.785798
## final  value 309.784268 
## converged
## # weights:  4
## initial  value 578.452674 
## final  value 353.451795 
## converged
## # weights:  10
## initial  value 475.139157 
## iter  10 value 337.282092
## iter  20 value 307.062585
## iter  30 value 306.729511
## iter  40 value 306.628106
## iter  50 value 306.548949
## iter  60 value 306.255612
## iter  70 value 305.929759
## iter  80 value 305.620370
## iter  90 value 305.434103
## iter 100 value 305.302875
## final  value 305.302875 
## stopped after 100 iterations
## # weights:  16
## initial  value 470.387841 
## iter  10 value 353.450869
## iter  20 value 309.898965
## iter  30 value 306.734907
## iter  40 value 306.699846
## iter  50 value 306.654024
## iter  60 value 306.638498
## iter  70 value 306.587131
## final  value 306.584738 
## converged
## # weights:  4
## initial  value 644.614345 
## iter  10 value 353.451681
## iter  10 value 353.451681
## final  value 353.451681 
## converged
## # weights:  10
## initial  value 1068.660371 
## iter  10 value 316.467817
## iter  20 value 303.591130
## iter  30 value 303.035244
## iter  40 value 302.973416
## iter  50 value 302.871969
## iter  60 value 302.860451
## iter  70 value 302.818161
## iter  80 value 302.813398
## iter  90 value 302.789989
## iter 100 value 302.785452
## final  value 302.785452 
## stopped after 100 iterations
## # weights:  16
## initial  value 765.044742 
## iter  10 value 353.451638
## final  value 353.451526 
## converged
## # weights:  4
## initial  value 355.240204 
## final  value 353.567492 
## converged
## # weights:  10
## initial  value 621.191716 
## iter  10 value 342.450344
## iter  20 value 307.748330
## iter  30 value 307.330981
## iter  40 value 306.741327
## iter  50 value 306.511449
## iter  60 value 306.438741
## iter  70 value 306.427718
## final  value 306.427704 
## converged
## # weights:  16
## initial  value 513.709775 
## iter  10 value 351.069662
## iter  20 value 311.195720
## iter  30 value 307.475415
## iter  40 value 307.019493
## iter  50 value 306.413446
## iter  60 value 306.208721
## iter  70 value 306.087428
## iter  80 value 306.029380
## iter  90 value 306.001268
## iter 100 value 305.995624
## final  value 305.995624 
## stopped after 100 iterations
## # weights:  4
## initial  value 715.088825 
## final  value 353.451711 
## converged
## # weights:  10
## initial  value 630.036088 
## iter  10 value 339.592779
## iter  20 value 303.183874
## iter  30 value 302.081966
## iter  40 value 300.779738
## iter  50 value 300.449084
## iter  60 value 300.236308
## iter  70 value 300.184846
## iter  80 value 300.161184
## iter  90 value 300.110076
## iter 100 value 299.804829
## final  value 299.804829 
## stopped after 100 iterations
## # weights:  16
## initial  value 634.238876 
## iter  10 value 353.361389
## iter  20 value 330.973127
## iter  30 value 302.985755
## iter  40 value 301.414288
## iter  50 value 300.890837
## iter  60 value 300.818109
## iter  70 value 300.695126
## iter  80 value 300.584610
## iter  90 value 300.486116
## iter 100 value 300.391581
## final  value 300.391581 
## stopped after 100 iterations
## # weights:  4
## initial  value 556.051016 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 669.974785 
## iter  10 value 351.835288
## final  value 351.835024 
## converged
## # weights:  16
## initial  value 467.162877 
## iter  10 value 346.426961
## iter  20 value 305.418602
## iter  30 value 304.996421
## iter  40 value 304.905308
## iter  50 value 304.870251
## iter  60 value 304.859616
## iter  70 value 304.832417
## iter  80 value 304.824734
## iter  90 value 304.822090
## iter 100 value 304.810931
## final  value 304.810931 
## stopped after 100 iterations
## # weights:  4
## initial  value 448.851907 
## iter  10 value 356.737346
## iter  20 value 349.196965
## iter  30 value 309.726826
## iter  40 value 309.271579
## iter  40 value 309.271579
## iter  40 value 309.271579
## final  value 309.271579 
## converged
## # weights:  10
## initial  value 545.889729 
## iter  10 value 351.493393
## iter  20 value 318.020556
## iter  30 value 308.610013
## iter  40 value 308.378660
## iter  50 value 308.176054
## iter  60 value 308.129756
## iter  70 value 308.126564
## iter  70 value 308.126562
## iter  70 value 308.126562
## final  value 308.126562 
## converged
## # weights:  16
## initial  value 426.522466 
## iter  10 value 337.782517
## iter  20 value 309.408050
## iter  30 value 308.734244
## iter  40 value 308.364161
## iter  50 value 308.114087
## iter  60 value 307.850713
## iter  70 value 307.749382
## iter  80 value 307.730461
## final  value 307.727190 
## converged
## # weights:  4
## initial  value 425.395731 
## iter  10 value 351.835195
## iter  10 value 351.835194
## final  value 351.835194 
## converged
## # weights:  10
## initial  value 374.036082 
## iter  10 value 351.769782
## iter  20 value 313.179759
## iter  30 value 305.225837
## iter  40 value 304.954453
## iter  50 value 304.921407
## iter  60 value 304.908131
## iter  70 value 304.834127
## iter  80 value 304.468721
## iter  90 value 303.894177
## iter 100 value 303.693736
## final  value 303.693736 
## stopped after 100 iterations
## # weights:  16
## initial  value 488.115143 
## iter  10 value 351.835495
## final  value 351.835450 
## converged
## # weights:  4
## initial  value 500.379879 
## final  value 351.835074 
## converged
## # weights:  10
## initial  value 569.394565 
## iter  10 value 343.630482
## iter  20 value 308.255270
## iter  30 value 307.328895
## iter  40 value 306.849588
## iter  50 value 306.697873
## iter  60 value 306.662450
## iter  70 value 306.652741
## iter  80 value 306.631714
## iter  90 value 306.625373
## iter 100 value 306.616159
## final  value 306.616159 
## stopped after 100 iterations
## # weights:  16
## initial  value 706.893258 
## iter  10 value 351.835130
## final  value 351.835019 
## converged
## # weights:  4
## initial  value 372.039499 
## final  value 351.951541 
## converged
## # weights:  10
## initial  value 440.028579 
## iter  10 value 351.111267
## iter  20 value 311.950256
## iter  30 value 310.762636
## iter  40 value 310.354142
## iter  50 value 310.068098
## iter  60 value 309.969685
## iter  70 value 309.935107
## final  value 309.934888 
## converged
## # weights:  16
## initial  value 456.544714 
## iter  10 value 351.988231
## iter  20 value 351.814601
## iter  30 value 340.395999
## iter  40 value 311.533301
## iter  50 value 310.724147
## iter  60 value 310.533319
## iter  70 value 310.282617
## iter  80 value 310.149304
## iter  90 value 310.028739
## iter 100 value 309.822601
## final  value 309.822601 
## stopped after 100 iterations
## # weights:  4
## initial  value 357.412562 
## final  value 351.835214 
## converged
## # weights:  10
## initial  value 437.727094 
## iter  10 value 351.837108
## final  value 351.837051 
## converged
## # weights:  16
## initial  value 660.029678 
## iter  10 value 351.714369
## iter  20 value 320.415723
## iter  30 value 307.718896
## iter  40 value 306.913139
## iter  50 value 306.749357
## iter  60 value 306.695229
## iter  70 value 306.663556
## iter  80 value 306.518679
## iter  90 value 305.807867
## iter 100 value 305.599204
## final  value 305.599204 
## stopped after 100 iterations
## # weights:  4
## initial  value 433.746950 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 375.755712 
## iter  10 value 349.636218
## iter  20 value 306.255832
## iter  30 value 305.760753
## iter  40 value 305.680580
## iter  50 value 305.660794
## iter  60 value 305.632502
## iter  70 value 305.613221
## iter  80 value 305.609636
## iter  90 value 305.590665
## iter 100 value 305.586797
## final  value 305.586797 
## stopped after 100 iterations
## # weights:  16
## initial  value 632.551091 
## iter  10 value 351.833400
## iter  20 value 307.108834
## iter  30 value 306.115833
## iter  40 value 305.859852
## iter  50 value 305.722029
## iter  60 value 305.667120
## iter  70 value 305.636352
## iter  80 value 305.626189
## iter  90 value 305.604228
## iter 100 value 305.593241
## final  value 305.593241 
## stopped after 100 iterations
## # weights:  4
## initial  value 513.522011 
## iter  10 value 355.189455
## iter  20 value 329.462160
## iter  30 value 310.127217
## final  value 309.880033 
## converged
## # weights:  10
## initial  value 677.202173 
## iter  10 value 346.506336
## iter  20 value 311.693268
## iter  30 value 309.850382
## iter  40 value 309.551403
## iter  50 value 309.077242
## iter  60 value 308.880460
## iter  70 value 308.821269
## iter  80 value 308.819794
## final  value 308.819776 
## converged
## # weights:  16
## initial  value 361.925453 
## iter  10 value 345.251700
## iter  20 value 310.201885
## iter  30 value 309.585946
## iter  40 value 308.948524
## iter  50 value 308.711482
## iter  60 value 308.531155
## iter  70 value 308.454365
## iter  80 value 308.436402
## final  value 308.436155 
## converged
## # weights:  4
## initial  value 600.694253 
## final  value 351.835211 
## converged
## # weights:  10
## initial  value 400.779087 
## iter  10 value 349.842025
## iter  20 value 306.893835
## iter  30 value 305.820048
## iter  40 value 305.754383
## iter  50 value 305.691566
## iter  60 value 305.674258
## iter  70 value 305.667588
## iter  80 value 305.663099
## iter  90 value 305.660620
## final  value 305.659769 
## converged
## # weights:  16
## initial  value 444.049417 
## iter  10 value 349.834325
## iter  20 value 306.065821
## iter  30 value 305.608443
## iter  40 value 304.991782
## iter  50 value 304.759212
## iter  60 value 304.523256
## iter  70 value 304.282218
## iter  80 value 303.747221
## iter  90 value 303.211221
## iter 100 value 303.130552
## final  value 303.130552 
## stopped after 100 iterations
## # weights:  4
## initial  value 544.199775 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 589.795128 
## final  value 353.451488 
## converged
## # weights:  16
## initial  value 526.031517 
## iter  10 value 299.038719
## iter  20 value 296.182858
## iter  30 value 296.095955
## iter  40 value 296.006233
## iter  50 value 295.963361
## iter  60 value 295.767620
## iter  70 value 294.887238
## iter  80 value 294.741500
## iter  90 value 294.584747
## iter 100 value 294.512474
## final  value 294.512474 
## stopped after 100 iterations
## # weights:  4
## initial  value 561.243033 
## final  value 353.567360 
## converged
## # weights:  10
## initial  value 424.675619 
## iter  10 value 313.735947
## iter  20 value 302.791683
## iter  30 value 302.024203
## iter  40 value 301.704574
## iter  50 value 301.557462
## final  value 301.550764 
## converged
## # weights:  16
## initial  value 623.562437 
## iter  10 value 340.343621
## iter  20 value 304.801451
## iter  30 value 302.069469
## iter  40 value 301.752725
## iter  50 value 301.490352
## iter  60 value 301.262390
## iter  70 value 301.111788
## iter  80 value 300.981069
## iter  90 value 300.941152
## final  value 300.938213 
## converged
## # weights:  4
## initial  value 455.359405 
## iter  10 value 353.451825
## iter  10 value 353.451825
## final  value 353.451825 
## converged
## # weights:  10
## initial  value 417.962640 
## final  value 353.452009 
## converged
## # weights:  16
## initial  value 673.212405 
## iter  10 value 353.452629
## final  value 353.452539 
## converged
## # weights:  4
## initial  value 550.307036 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 411.845797 
## iter  10 value 320.975863
## iter  20 value 309.587391
## iter  30 value 309.360971
## iter  40 value 309.284392
## iter  50 value 309.260147
## iter  60 value 309.247369
## final  value 309.246471 
## converged
## # weights:  16
## initial  value 613.526235 
## iter  10 value 351.023452
## iter  20 value 343.735996
## iter  30 value 310.823477
## iter  40 value 309.547852
## iter  50 value 309.431667
## iter  60 value 309.314347
## iter  70 value 309.271631
## iter  80 value 309.248750
## iter  90 value 309.234529
## iter 100 value 309.220113
## final  value 309.220113 
## stopped after 100 iterations
## # weights:  4
## initial  value 467.045367 
## iter  10 value 339.781426
## iter  20 value 313.465939
## final  value 313.463634 
## converged
## # weights:  10
## initial  value 525.491254 
## iter  10 value 348.539981
## iter  20 value 313.643560
## iter  30 value 313.123551
## iter  40 value 312.622822
## iter  50 value 312.416532
## iter  60 value 312.360376
## iter  70 value 312.359392
## iter  70 value 312.359389
## iter  70 value 312.359389
## final  value 312.359389 
## converged
## # weights:  16
## initial  value 391.280538 
## iter  10 value 316.695505
## iter  20 value 313.125316
## iter  30 value 312.448786
## iter  40 value 312.340877
## iter  50 value 312.324248
## final  value 312.324243 
## converged
## # weights:  4
## initial  value 638.269289 
## final  value 351.835205 
## converged
## # weights:  10
## initial  value 544.771426 
## iter  10 value 346.037286
## iter  20 value 310.343265
## iter  30 value 309.345606
## iter  40 value 309.027682
## iter  50 value 308.325922
## iter  60 value 308.085317
## iter  70 value 307.678439
## iter  80 value 307.302465
## iter  90 value 307.025546
## iter 100 value 306.998781
## final  value 306.998781 
## stopped after 100 iterations
## # weights:  16
## initial  value 575.193288 
## iter  10 value 349.570838
## iter  20 value 311.667557
## iter  30 value 308.665983
## iter  40 value 307.249160
## iter  50 value 307.131673
## iter  60 value 307.085677
## iter  70 value 307.061173
## iter  80 value 307.058238
## iter  80 value 307.058237
## iter  80 value 307.058236
## final  value 307.058236 
## converged
## # weights:  4
## initial  value 537.091244 
## iter  10 value 351.835034
## iter  10 value 351.835034
## final  value 351.835034 
## converged
## # weights:  10
## initial  value 468.607075 
## iter  10 value 351.835053
## final  value 351.835016 
## converged
## # weights:  16
## initial  value 563.974410 
## iter  10 value 320.045976
## iter  20 value 310.424026
## iter  30 value 309.359656
## iter  40 value 309.267505
## final  value 309.258440 
## converged
## # weights:  4
## initial  value 421.995775 
## iter  10 value 348.423165
## iter  20 value 312.852317
## iter  20 value 312.852317
## final  value 312.852317 
## converged
## # weights:  10
## initial  value 499.633253 
## iter  10 value 352.649705
## iter  20 value 320.112725
## iter  30 value 312.785304
## iter  40 value 312.436438
## iter  50 value 312.129458
## iter  60 value 311.902783
## iter  70 value 311.853995
## iter  80 value 311.847985
## final  value 311.847942 
## converged
## # weights:  16
## initial  value 392.445851 
## iter  10 value 351.942800
## final  value 351.942535 
## converged
## # weights:  4
## initial  value 835.660226 
## final  value 351.841377 
## converged
## # weights:  10
## initial  value 519.694063 
## iter  10 value 351.835498
## final  value 351.835480 
## converged
## # weights:  16
## initial  value 353.738695 
## iter  10 value 347.185911
## iter  20 value 310.707135
## iter  30 value 309.340732
## iter  40 value 309.237420
## iter  50 value 309.026744
## iter  60 value 308.962981
## iter  70 value 308.894309
## iter  80 value 308.713313
## iter  90 value 308.310260
## iter 100 value 308.141126
## final  value 308.141126 
## stopped after 100 iterations
## # weights:  4
## initial  value 633.435514 
## final  value 351.835013 
## converged
## # weights:  10
## initial  value 417.602616 
## iter  10 value 351.835065
## final  value 351.835026 
## converged
## # weights:  16
## initial  value 548.705463 
## iter  10 value 346.056867
## iter  20 value 303.719575
## iter  30 value 303.611876
## iter  40 value 303.600718
## iter  50 value 303.482270
## iter  60 value 303.433295
## iter  70 value 303.299933
## iter  80 value 303.068268
## iter  90 value 302.962541
## iter 100 value 302.905590
## final  value 302.905590 
## stopped after 100 iterations
## # weights:  4
## initial  value 550.958898 
## iter  10 value 351.208643
## iter  20 value 311.087343
## iter  30 value 307.745766
## final  value 307.744485 
## converged
## # weights:  10
## initial  value 552.244000 
## iter  10 value 350.512648
## iter  20 value 309.520673
## iter  30 value 307.648303
## iter  40 value 307.062672
## iter  50 value 306.790910
## iter  60 value 306.714229
## iter  70 value 306.711827
## final  value 306.711823 
## converged
## # weights:  16
## initial  value 658.100357 
## iter  10 value 346.948275
## iter  20 value 308.792495
## iter  30 value 307.410887
## iter  40 value 307.195050
## iter  50 value 306.802553
## iter  60 value 306.574415
## iter  70 value 306.420073
## iter  80 value 306.392145
## final  value 306.390074 
## converged
## # weights:  4
## initial  value 429.103541 
## iter  10 value 337.093617
## iter  20 value 303.938013
## iter  30 value 303.620255
## iter  40 value 303.553726
## iter  50 value 303.512862
## iter  60 value 303.504412
## iter  70 value 303.486987
## final  value 303.485580 
## converged
## # weights:  10
## initial  value 352.635591 
## iter  10 value 351.835442
## final  value 351.835432 
## converged
## # weights:  16
## initial  value 460.870528 
## iter  10 value 342.757246
## iter  20 value 304.415927
## iter  30 value 303.508837
## iter  40 value 303.502399
## iter  50 value 303.486789
## iter  60 value 303.468655
## iter  70 value 303.463575
## final  value 303.462213 
## converged
## # weights:  4
## initial  value 549.857138 
## iter  10 value 315.332767
## iter  20 value 307.394175
## iter  30 value 306.899686
## iter  40 value 306.726998
## iter  50 value 306.653980
## iter  60 value 306.621407
## iter  70 value 306.612141
## iter  80 value 306.603818
## iter  90 value 306.595906
## iter 100 value 306.589028
## final  value 306.589028 
## stopped after 100 iterations
## # weights:  10
## initial  value 564.251024 
## iter  10 value 310.585709
## iter  20 value 307.113000
## final  value 306.937516 
## converged
## # weights:  16
## initial  value 562.611655 
## iter  10 value 353.451583
## final  value 353.451552 
## converged
## # weights:  4
## initial  value 668.168774 
## iter  10 value 353.682282
## iter  20 value 316.265947
## iter  30 value 311.079502
## final  value 311.043775 
## converged
## # weights:  10
## initial  value 580.512810 
## iter  10 value 352.258690
## iter  20 value 313.551520
## iter  30 value 311.188193
## iter  40 value 310.928025
## iter  50 value 310.557609
## iter  60 value 310.425801
## iter  70 value 310.392261
## final  value 310.391622 
## converged
## # weights:  16
## initial  value 485.637656 
## iter  10 value 354.821143
## iter  20 value 311.274778
## iter  30 value 310.399108
## iter  40 value 309.939478
## iter  50 value 309.605788
## iter  60 value 309.416969
## iter  70 value 309.353279
## iter  80 value 309.341243
## final  value 309.341210 
## converged
## # weights:  4
## initial  value 432.247766 
## iter  10 value 313.357778
## iter  20 value 307.521632
## iter  30 value 306.853676
## iter  40 value 306.745454
## iter  40 value 306.745452
## final  value 306.745452 
## converged
## # weights:  10
## initial  value 579.844669 
## iter  10 value 353.451508
## iter  20 value 352.671304
## iter  30 value 327.222384
## iter  40 value 307.042410
## iter  50 value 306.709095
## iter  60 value 306.654437
## iter  70 value 306.634624
## iter  70 value 306.634622
## iter  70 value 306.634620
## final  value 306.634620 
## converged
## # weights:  16
## initial  value 467.387533 
## iter  10 value 353.451890
## iter  20 value 350.989956
## iter  30 value 308.535701
## iter  40 value 306.994525
## iter  50 value 306.774789
## iter  60 value 306.685264
## iter  70 value 306.660483
## iter  80 value 306.626117
## final  value 306.625360 
## converged
## # weights:  4
## initial  value 618.987859 
## iter  10 value 352.505238
## iter  20 value 304.572124
## iter  30 value 303.838271
## iter  40 value 303.608063
## iter  50 value 303.452502
## iter  60 value 303.417006
## iter  70 value 303.385765
## iter  80 value 303.365397
## iter  90 value 303.357412
## iter 100 value 303.349373
## final  value 303.349373 
## stopped after 100 iterations
## # weights:  10
## initial  value 440.592621 
## final  value 353.451606 
## converged
## # weights:  16
## initial  value 452.792068 
## iter  10 value 352.308332
## iter  20 value 304.275013
## iter  30 value 303.474195
## iter  40 value 303.343349
## iter  50 value 303.341128
## iter  60 value 303.328180
## iter  70 value 303.321093
## final  value 303.320513 
## converged
## # weights:  4
## initial  value 531.040069 
## final  value 353.567177 
## converged
## # weights:  10
## initial  value 430.286634 
## iter  10 value 314.008579
## iter  20 value 308.247181
## iter  30 value 307.367110
## iter  40 value 307.069147
## iter  50 value 306.881634
## iter  60 value 306.834166
## iter  60 value 306.834166
## final  value 306.834166 
## converged
## # weights:  16
## initial  value 358.084909 
## iter  10 value 311.401423
## iter  20 value 308.044475
## iter  30 value 307.234349
## iter  40 value 306.825957
## iter  50 value 306.661989
## iter  60 value 306.530346
## iter  70 value 306.502536
## final  value 306.499125 
## converged
## # weights:  4
## initial  value 448.210226 
## iter  10 value 353.451832
## iter  10 value 353.451832
## final  value 353.451832 
## converged
## # weights:  10
## initial  value 451.709267 
## iter  10 value 353.451899
## final  value 353.451848 
## converged
## # weights:  16
## initial  value 1011.993685 
## iter  10 value 353.454410
## final  value 353.454361 
## converged
## # weights:  4
## initial  value 520.646908 
## iter  10 value 353.451575
## iter  10 value 353.451575
## final  value 353.451575 
## converged
## # weights:  10
## initial  value 601.708309 
## final  value 353.451617 
## converged
## # weights:  16
## initial  value 356.827438 
## iter  10 value 350.318015
## iter  20 value 306.992304
## iter  30 value 305.712719
## iter  40 value 305.285878
## iter  50 value 304.254268
## iter  60 value 303.369960
## iter  70 value 301.017781
## iter  80 value 300.338733
## iter  90 value 300.253195
## iter 100 value 300.120170
## final  value 300.120170 
## stopped after 100 iterations
## # weights:  4
## initial  value 631.848443 
## iter  10 value 352.411376
## iter  20 value 312.906587
## iter  30 value 310.015491
## iter  30 value 310.015489
## iter  30 value 310.015489
## final  value 310.015489 
## converged
## # weights:  10
## initial  value 404.202424 
## iter  10 value 348.565715
## iter  20 value 309.993781
## iter  30 value 309.283085
## iter  40 value 308.951931
## iter  50 value 308.750093
## iter  60 value 308.689650
## final  value 308.685771 
## converged
## # weights:  16
## initial  value 410.513863 
## iter  10 value 353.622657
## iter  20 value 353.608774
## iter  30 value 323.146738
## iter  40 value 313.381974
## iter  50 value 310.754703
## iter  60 value 310.422593
## iter  70 value 310.372501
## iter  80 value 309.347546
## iter  90 value 309.228701
## iter 100 value 309.217659
## final  value 309.217659 
## stopped after 100 iterations
## # weights:  4
## initial  value 680.857005 
## final  value 353.455555 
## converged
## # weights:  10
## initial  value 421.440960 
## final  value 353.452003 
## converged
## # weights:  16
## initial  value 370.327494 
## iter  10 value 328.999279
## iter  20 value 305.500850
## iter  30 value 304.361446
## final  value 304.169256 
## converged
## # weights:  4
## initial  value 519.485521 
## iter  10 value 351.835041
## iter  10 value 351.835041
## final  value 351.835041 
## converged
## # weights:  10
## initial  value 532.446564 
## final  value 351.835063 
## converged
## # weights:  16
## initial  value 407.292586 
## final  value 351.834962 
## converged
## # weights:  4
## initial  value 649.075072 
## iter  10 value 350.807430
## iter  20 value 312.841971
## final  value 312.377730 
## converged
## # weights:  10
## initial  value 356.653205 
## iter  10 value 324.242643
## iter  20 value 313.954065
## iter  30 value 312.434630
## iter  40 value 312.199369
## iter  50 value 311.981693
## iter  60 value 311.919681
## iter  70 value 311.867995
## iter  80 value 311.582613
## iter  90 value 311.374533
## iter 100 value 311.324070
## final  value 311.324070 
## stopped after 100 iterations
## # weights:  16
## initial  value 709.334830 
## iter  10 value 317.689816
## iter  20 value 312.414233
## iter  30 value 312.113421
## iter  40 value 311.599477
## iter  50 value 311.396872
## iter  60 value 311.234208
## iter  70 value 311.207567
## final  value 311.205858 
## converged
## # weights:  4
## initial  value 494.770352 
## final  value 351.836846 
## converged
## # weights:  10
## initial  value 575.948252 
## iter  10 value 351.835355
## final  value 351.835346 
## converged
## # weights:  16
## initial  value 520.003413 
## iter  10 value 351.820906
## iter  20 value 310.070927
## iter  30 value 308.382993
## iter  40 value 308.270337
## iter  50 value 308.256153
## iter  60 value 308.255400
## final  value 308.253449 
## converged
## # weights:  4
## initial  value 476.012060 
## final  value 351.835038 
## converged
## # weights:  10
## initial  value 630.185711 
## iter  10 value 312.304057
## iter  20 value 308.704697
## iter  30 value 308.219334
## iter  40 value 308.074981
## iter  50 value 308.000254
## iter  60 value 307.980228
## iter  70 value 307.955927
## iter  80 value 307.941846
## iter  90 value 307.916202
## iter 100 value 307.911588
## final  value 307.911588 
## stopped after 100 iterations
## # weights:  16
## initial  value 446.001743 
## iter  10 value 311.689518
## iter  20 value 308.213244
## iter  30 value 307.513697
## iter  40 value 307.365175
## iter  50 value 307.181844
## iter  60 value 307.028144
## iter  70 value 306.891886
## iter  80 value 306.754300
## iter  90 value 306.576767
## iter 100 value 305.309646
## final  value 305.309646 
## stopped after 100 iterations
## # weights:  4
## initial  value 555.459866 
## iter  10 value 334.496442
## iter  20 value 312.091657
## final  value 312.064622 
## converged
## # weights:  10
## initial  value 551.237080 
## iter  10 value 351.442756
## iter  20 value 314.788764
## iter  30 value 312.705617
## final  value 312.694604 
## converged
## # weights:  16
## initial  value 479.507094 
## iter  10 value 343.618989
## iter  20 value 312.396802
## iter  30 value 311.598869
## iter  40 value 311.141415
## iter  50 value 310.913972
## iter  60 value 310.739839
## iter  70 value 310.690897
## iter  80 value 310.682764
## iter  90 value 310.680930
## final  value 310.680914 
## converged
## # weights:  4
## initial  value 580.387495 
## iter  10 value 351.835290
## iter  10 value 351.835290
## final  value 351.835290 
## converged
## # weights:  10
## initial  value 408.911835 
## final  value 351.835419 
## converged
## # weights:  16
## initial  value 453.832021 
## iter  10 value 330.010523
## iter  20 value 308.888178
## iter  30 value 308.216615
## iter  40 value 308.138071
## iter  50 value 308.025596
## iter  60 value 307.985820
## iter  70 value 307.405635
## iter  80 value 307.327306
## iter  90 value 307.135959
## iter 100 value 306.970206
## final  value 306.970206 
## stopped after 100 iterations
## # weights:  4
## initial  value 472.306581 
## iter  10 value 351.835035
## iter  10 value 351.835035
## final  value 351.835035 
## converged
## # weights:  10
## initial  value 648.298634 
## iter  10 value 348.583168
## iter  20 value 302.296313
## iter  30 value 301.898048
## iter  40 value 301.480933
## iter  50 value 301.283189
## final  value 301.174317 
## converged
## # weights:  16
## initial  value 558.656167 
## iter  10 value 330.311161
## iter  20 value 302.413294
## iter  30 value 301.771952
## iter  40 value 301.736681
## iter  50 value 301.643414
## iter  60 value 301.607807
## iter  70 value 301.582962
## iter  80 value 301.567115
## iter  90 value 301.559361
## iter 100 value 301.551170
## final  value 301.551170 
## stopped after 100 iterations
## # weights:  4
## initial  value 393.564085 
## iter  10 value 352.787146
## iter  20 value 351.955710
## final  value 351.951707 
## converged
## # weights:  10
## initial  value 450.642598 
## iter  10 value 351.942968
## iter  20 value 311.033209
## iter  30 value 306.018236
## iter  40 value 305.670055
## iter  50 value 305.561124
## iter  60 value 305.529130
## iter  70 value 305.526758
## iter  80 value 305.526112
## final  value 305.525841 
## converged
## # weights:  16
## initial  value 459.676828 
## iter  10 value 351.960192
## iter  20 value 309.779975
## iter  30 value 305.912470
## iter  40 value 305.208510
## iter  50 value 304.877641
## iter  60 value 304.587823
## iter  70 value 304.467297
## iter  80 value 304.416833
## iter  90 value 304.413344
## final  value 304.412959 
## converged
## # weights:  4
## initial  value 438.765726 
## final  value 351.835472 
## converged
## # weights:  10
## initial  value 386.967198 
## iter  10 value 351.737243
## iter  20 value 303.469182
## iter  30 value 301.664702
## iter  40 value 301.627335
## iter  50 value 301.623809
## final  value 301.623753 
## converged
## # weights:  16
## initial  value 395.662966 
## iter  10 value 335.915617
## iter  20 value 303.149516
## iter  30 value 301.385410
## iter  40 value 301.031300
## iter  50 value 300.829256
## iter  60 value 300.750533
## iter  70 value 300.730784
## iter  80 value 300.712353
## iter  90 value 300.676913
## iter 100 value 300.668316
## final  value 300.668316 
## stopped after 100 iterations
## # weights:  4
## initial  value 671.694802 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 403.725190 
## iter  10 value 351.835062
## final  value 351.835023 
## converged
## # weights:  16
## initial  value 768.886325 
## iter  10 value 341.917517
## iter  20 value 303.186450
## iter  30 value 302.018825
## iter  40 value 301.692485
## iter  50 value 301.621807
## iter  60 value 301.586480
## iter  70 value 301.557323
## final  value 301.548803 
## converged
## # weights:  4
## initial  value 482.346870 
## iter  10 value 353.705389
## iter  20 value 351.972626
## final  value 351.951819 
## converged
## # weights:  10
## initial  value 512.847756 
## iter  10 value 352.179986
## iter  20 value 344.533520
## iter  30 value 306.385500
## iter  40 value 306.132555
## iter  50 value 305.828696
## iter  60 value 305.353960
## iter  70 value 305.092836
## iter  80 value 304.983595
## iter  90 value 304.977419
## final  value 304.977371 
## converged
## # weights:  16
## initial  value 370.499046 
## iter  10 value 318.403193
## iter  20 value 306.447406
## iter  30 value 305.851084
## iter  40 value 305.594372
## iter  50 value 305.185715
## iter  60 value 304.733285
## iter  70 value 304.515761
## iter  80 value 304.455770
## iter  90 value 304.427641
## final  value 304.426364 
## converged
## # weights:  4
## initial  value 669.033498 
## final  value 351.835219 
## converged
## # weights:  10
## initial  value 394.057012 
## iter  10 value 323.475623
## iter  20 value 302.496364
## iter  30 value 301.005332
## iter  40 value 300.739362
## iter  50 value 300.494332
## iter  60 value 300.281027
## iter  70 value 300.244744
## iter  80 value 300.180354
## iter  90 value 299.994594
## iter 100 value 299.894824
## final  value 299.894824 
## stopped after 100 iterations
## # weights:  16
## initial  value 463.834577 
## iter  10 value 320.509389
## iter  20 value 303.201908
## iter  30 value 301.703886
## final  value 301.681644 
## converged
## # weights:  4
## initial  value 416.191491 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 374.570303 
## iter  10 value 353.451561
## final  value 353.451546 
## converged
## # weights:  16
## initial  value 605.152310 
## iter  10 value 353.447860
## iter  20 value 351.112845
## iter  30 value 311.335662
## iter  40 value 303.536134
## iter  50 value 303.342783
## final  value 303.336459 
## converged
## # weights:  4
## initial  value 388.515365 
## iter  10 value 354.022433
## iter  20 value 353.569956
## final  value 353.567332 
## converged
## # weights:  10
## initial  value 395.809460 
## iter  10 value 338.037871
## iter  20 value 309.353000
## iter  30 value 308.435472
## iter  40 value 307.573027
## iter  50 value 307.275092
## iter  60 value 307.240950
## final  value 307.240532 
## converged
## # weights:  16
## initial  value 377.906624 
## iter  10 value 320.222116
## iter  20 value 308.155414
## iter  30 value 307.519060
## iter  40 value 306.920305
## iter  50 value 306.674769
## iter  60 value 306.593458
## iter  70 value 306.567642
## final  value 306.567512 
## converged
## # weights:  4
## initial  value 448.376682 
## iter  10 value 353.429121
## iter  20 value 304.410989
## iter  30 value 303.592051
## iter  40 value 303.383493
## iter  50 value 303.329606
## iter  60 value 303.307795
## iter  70 value 303.298298
## iter  80 value 303.282814
## iter  90 value 303.276961
## iter 100 value 303.269288
## final  value 303.269288 
## stopped after 100 iterations
## # weights:  10
## initial  value 624.047854 
## iter  10 value 311.834440
## iter  20 value 303.690886
## iter  30 value 303.489120
## iter  40 value 302.629281
## iter  50 value 302.198654
## iter  60 value 301.899293
## iter  70 value 301.580223
## iter  80 value 299.892001
## iter  90 value 299.511282
## iter 100 value 299.443087
## final  value 299.443087 
## stopped after 100 iterations
## # weights:  16
## initial  value 627.423989 
## iter  10 value 327.692102
## iter  20 value 303.528641
## iter  30 value 303.265150
## final  value 303.264137 
## converged
## # weights:  4
## initial  value 573.330632 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 560.847149 
## final  value 351.834770 
## converged
## # weights:  16
## initial  value 581.701327 
## iter  10 value 332.465826
## iter  20 value 302.286343
## iter  30 value 300.362481
## iter  40 value 299.817071
## iter  50 value 299.746700
## iter  60 value 299.704304
## iter  70 value 299.648022
## iter  80 value 299.122448
## iter  90 value 297.570215
## iter 100 value 297.431442
## final  value 297.431442 
## stopped after 100 iterations
## # weights:  4
## initial  value 495.517536 
## iter  10 value 352.031924
## iter  20 value 326.470363
## iter  30 value 306.448365
## final  value 306.392351 
## converged
## # weights:  10
## initial  value 603.008454 
## iter  10 value 353.709892
## iter  20 value 307.304721
## iter  30 value 304.713533
## iter  40 value 304.290211
## iter  50 value 303.888443
## iter  60 value 303.669925
## iter  70 value 303.532000
## iter  80 value 303.520802
## final  value 303.520222 
## converged
## # weights:  16
## initial  value 508.503354 
## iter  10 value 347.231203
## iter  20 value 311.684065
## iter  30 value 304.804946
## iter  40 value 304.571109
## iter  50 value 304.141829
## iter  60 value 303.946821
## iter  70 value 303.833173
## iter  80 value 303.811223
## iter  90 value 303.805398
## final  value 303.805371 
## converged
## # weights:  4
## initial  value 440.176371 
## final  value 351.835339 
## converged
## # weights:  10
## initial  value 476.547937 
## iter  10 value 338.058900
## iter  20 value 300.160449
## iter  30 value 299.798263
## iter  40 value 299.125851
## iter  50 value 297.309556
## iter  60 value 297.172580
## iter  70 value 296.825997
## iter  80 value 296.613941
## iter  90 value 296.603067
## iter 100 value 296.599667
## final  value 296.599667 
## stopped after 100 iterations
## # weights:  16
## initial  value 416.859071 
## iter  10 value 348.933118
## iter  20 value 300.609620
## iter  30 value 299.846127
## iter  40 value 299.774473
## iter  50 value 299.756892
## iter  60 value 299.746303
## final  value 299.746298 
## converged
## # weights:  4
## initial  value 396.240889 
## iter  10 value 353.451562
## iter  10 value 353.451562
## final  value 353.451562 
## converged
## # weights:  10
## initial  value 612.196447 
## iter  10 value 315.171119
## iter  20 value 309.191216
## iter  30 value 308.898680
## iter  40 value 308.840321
## iter  50 value 308.777608
## iter  60 value 308.749764
## iter  70 value 308.354595
## iter  80 value 307.829772
## iter  90 value 307.697481
## iter 100 value 307.568352
## final  value 307.568352 
## stopped after 100 iterations
## # weights:  16
## initial  value 913.184757 
## iter  10 value 353.451594
## final  value 353.451557 
## converged
## # weights:  4
## initial  value 613.582754 
## iter  10 value 351.936267
## iter  20 value 313.649806
## final  value 313.078090 
## converged
## # weights:  10
## initial  value 378.230031 
## iter  10 value 319.884803
## iter  20 value 313.048963
## iter  30 value 312.840677
## iter  40 value 312.527633
## iter  50 value 312.468491
## final  value 312.465422 
## converged
## # weights:  16
## initial  value 845.110029 
## iter  10 value 353.623753
## iter  20 value 313.184635
## iter  30 value 312.673115
## iter  40 value 312.362052
## iter  50 value 312.243205
## iter  60 value 312.238250
## final  value 312.238135 
## converged
## # weights:  4
## initial  value 487.101862 
## iter  10 value 353.451841
## iter  10 value 353.451841
## final  value 353.451841 
## converged
## # weights:  10
## initial  value 373.839703 
## iter  10 value 353.451172
## iter  20 value 340.277907
## iter  30 value 310.118631
## iter  40 value 309.158773
## iter  50 value 308.943865
## iter  60 value 308.890487
## iter  70 value 308.835206
## iter  80 value 308.810690
## iter  90 value 308.808728
## iter 100 value 308.802856
## final  value 308.802856 
## stopped after 100 iterations
## # weights:  16
## initial  value 535.868261 
## iter  10 value 321.495383
## iter  20 value 309.274494
## iter  30 value 308.805026
## iter  40 value 308.803262
## final  value 308.802802 
## converged
## # weights:  4
## initial  value 626.020490 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 459.242091 
## iter  10 value 353.451923
## final  value 353.451795 
## converged
## # weights:  16
## initial  value 403.167247 
## iter  10 value 316.562878
## iter  20 value 307.561091
## iter  30 value 307.281114
## iter  40 value 307.178959
## iter  50 value 306.838306
## iter  60 value 306.706661
## iter  70 value 306.651914
## iter  80 value 306.599404
## iter  90 value 306.523524
## iter 100 value 306.089616
## final  value 306.089616 
## stopped after 100 iterations
## # weights:  4
## initial  value 504.364736 
## iter  10 value 355.455366
## iter  20 value 353.596694
## final  value 353.567151 
## converged
## # weights:  10
## initial  value 491.230961 
## iter  10 value 353.366706
## iter  20 value 313.067911
## iter  30 value 312.103047
## iter  30 value 312.103046
## iter  30 value 312.103046
## final  value 312.103046 
## converged
## # weights:  16
## initial  value 474.470631 
## iter  10 value 353.498422
## iter  20 value 315.853080
## iter  30 value 311.316269
## iter  40 value 310.749749
## iter  50 value 310.529925
## iter  60 value 310.249146
## iter  70 value 310.147747
## iter  80 value 310.116087
## iter  90 value 310.113989
## final  value 310.113766 
## converged
## # weights:  4
## initial  value 386.180207 
## final  value 353.451828 
## converged
## # weights:  10
## initial  value 367.259817 
## final  value 353.452686 
## converged
## # weights:  16
## initial  value 571.352386 
## iter  10 value 351.439171
## iter  20 value 308.767073
## iter  30 value 307.466687
## iter  40 value 307.435919
## iter  50 value 307.386052
## iter  60 value 307.352360
## iter  70 value 307.339650
## final  value 307.338680 
## converged
## # weights:  4
## initial  value 404.808318 
## iter  10 value 307.961896
## iter  20 value 305.628562
## iter  30 value 305.302861
## iter  40 value 305.191740
## iter  50 value 305.132134
## iter  60 value 305.112107
## iter  70 value 305.081716
## iter  80 value 305.073163
## iter  90 value 305.065689
## iter 100 value 305.055819
## final  value 305.055819 
## stopped after 100 iterations
## # weights:  10
## initial  value 651.633573 
## final  value 351.835219 
## converged
## # weights:  16
## initial  value 391.121484 
## iter  10 value 351.835243
## final  value 351.834753 
## converged
## # weights:  4
## initial  value 402.948486 
## iter  10 value 352.170952
## iter  20 value 347.952902
## iter  30 value 311.100190
## iter  40 value 309.814457
## final  value 309.814379 
## converged
## # weights:  10
## initial  value 679.660660 
## iter  10 value 349.357104
## iter  20 value 310.427110
## iter  30 value 309.462453
## iter  40 value 309.173065
## iter  50 value 309.041268
## iter  60 value 309.030738
## final  value 309.030654 
## converged
## # weights:  16
## initial  value 647.210431 
## iter  10 value 347.779469
## iter  20 value 311.639633
## iter  30 value 309.763480
## iter  40 value 309.304896
## iter  50 value 308.852813
## iter  60 value 308.558536
## iter  70 value 308.302581
## iter  80 value 308.138655
## iter  90 value 308.068819
## iter 100 value 308.052695
## final  value 308.052695 
## stopped after 100 iterations
## # weights:  4
## initial  value 363.786612 
## final  value 351.835250 
## converged
## # weights:  10
## initial  value 708.485811 
## iter  10 value 347.374149
## iter  20 value 306.446785
## iter  30 value 305.485237
## iter  40 value 305.194571
## iter  50 value 305.170825
## iter  60 value 305.145244
## final  value 305.124009 
## converged
## # weights:  16
## initial  value 365.009554 
## iter  10 value 331.214019
## iter  20 value 306.632960
## iter  30 value 305.499704
## iter  40 value 305.327791
## iter  50 value 305.223021
## iter  60 value 305.162707
## iter  70 value 305.142651
## iter  80 value 305.140518
## iter  90 value 305.136359
## iter 100 value 305.135672
## final  value 305.135672 
## stopped after 100 iterations
## # weights:  4
## initial  value 652.462846 
## final  value 353.451547 
## converged
## # weights:  10
## initial  value 577.038998 
## iter  10 value 324.914704
## iter  20 value 308.429622
## iter  30 value 308.172239
## iter  40 value 308.098519
## iter  50 value 308.033999
## iter  60 value 307.430799
## iter  70 value 307.108434
## iter  80 value 306.965177
## iter  90 value 306.809171
## iter 100 value 306.601012
## final  value 306.601012 
## stopped after 100 iterations
## # weights:  16
## initial  value 434.725070 
## iter  10 value 351.792625
## iter  20 value 309.613174
## iter  30 value 308.167327
## iter  40 value 308.040521
## iter  50 value 308.018876
## iter  60 value 307.987695
## iter  70 value 307.970316
## iter  80 value 307.952138
## iter  90 value 307.940201
## iter 100 value 307.923592
## final  value 307.923592 
## stopped after 100 iterations
## # weights:  4
## initial  value 431.856003 
## iter  10 value 353.567184
## iter  10 value 353.567184
## final  value 353.567184 
## converged
## # weights:  10
## initial  value 959.251881 
## iter  10 value 363.363733
## iter  20 value 351.719427
## iter  30 value 342.773067
## iter  40 value 312.290120
## iter  50 value 311.342474
## iter  60 value 311.234258
## iter  70 value 311.200904
## iter  80 value 311.199799
## final  value 311.199770 
## converged
## # weights:  16
## initial  value 465.810597 
## iter  10 value 352.588272
## iter  20 value 316.674759
## iter  30 value 311.897142
## iter  40 value 311.402782
## iter  50 value 311.164835
## iter  60 value 311.134104
## iter  70 value 311.130655
## iter  80 value 311.123385
## final  value 311.122905 
## converged
## # weights:  4
## initial  value 429.156837 
## final  value 353.451805 
## converged
## # weights:  10
## initial  value 884.555446 
## iter  10 value 353.453059
## final  value 353.453041 
## converged
## # weights:  16
## initial  value 553.946686 
## final  value 353.452386 
## converged
## # weights:  4
## initial  value 543.149109 
## iter  10 value 351.835042
## iter  10 value 351.835042
## final  value 351.835042 
## converged
## # weights:  10
## initial  value 395.599066 
## iter  10 value 338.212429
## iter  20 value 303.466566
## iter  30 value 302.332138
## final  value 302.331259 
## converged
## # weights:  16
## initial  value 598.027632 
## final  value 351.834834 
## converged
## # weights:  4
## initial  value 384.142741 
## final  value 351.951616 
## converged
## # weights:  10
## initial  value 567.966878 
## iter  10 value 351.675552
## iter  20 value 327.691495
## iter  30 value 307.025010
## iter  40 value 306.493408
## iter  50 value 305.906100
## iter  60 value 305.688013
## iter  70 value 305.582960
## final  value 305.581500 
## converged
## # weights:  16
## initial  value 733.010491 
## iter  10 value 338.909865
## iter  20 value 306.303709
## iter  30 value 305.807163
## iter  40 value 305.540554
## iter  50 value 305.367143
## iter  60 value 305.270432
## iter  70 value 305.198490
## iter  80 value 305.182665
## iter  90 value 305.177677
## final  value 305.177132 
## converged
## # weights:  4
## initial  value 427.297036 
## final  value 351.835175 
## converged
## # weights:  10
## initial  value 506.408756 
## iter  10 value 315.981541
## iter  20 value 302.879008
## iter  30 value 302.363326
## iter  40 value 302.297243
## final  value 302.271879 
## converged
## # weights:  16
## initial  value 362.253967 
## iter  10 value 304.272912
## iter  20 value 302.455467
## iter  30 value 302.241799
## final  value 302.236274 
## converged
## # weights:  4
## initial  value 486.257206 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 817.439310 
## iter  10 value 353.460279
## iter  20 value 353.451566
## final  value 353.451555 
## converged
## # weights:  16
## initial  value 494.884781 
## iter  10 value 350.497804
## iter  20 value 309.585122
## iter  30 value 305.959056
## iter  40 value 305.846042
## iter  50 value 305.761013
## iter  60 value 305.690232
## iter  70 value 305.653512
## iter  80 value 305.631575
## iter  90 value 305.630430
## iter 100 value 305.614157
## final  value 305.614157 
## stopped after 100 iterations
## # weights:  4
## initial  value 603.078573 
## iter  10 value 344.760940
## iter  20 value 312.394328
## iter  30 value 312.219175
## final  value 312.219166 
## converged
## # weights:  10
## initial  value 535.587792 
## iter  10 value 356.327035
## iter  20 value 313.131333
## iter  30 value 312.083330
## iter  40 value 311.510967
## iter  50 value 311.345291
## iter  60 value 311.089515
## iter  70 value 311.050667
## iter  80 value 311.042831
## final  value 311.042824 
## converged
## # weights:  16
## initial  value 647.537700 
## iter  10 value 334.247102
## iter  20 value 313.835491
## iter  30 value 312.046790
## iter  40 value 311.710220
## iter  50 value 311.205686
## iter  60 value 310.877055
## iter  70 value 310.699970
## iter  80 value 310.664451
## iter  90 value 310.635931
## final  value 310.635391 
## converged
## # weights:  4
## initial  value 524.927048 
## final  value 353.451757 
## converged
## # weights:  10
## initial  value 674.633853 
## iter  10 value 353.451923
## final  value 353.451847 
## converged
## # weights:  16
## initial  value 362.615358 
## iter  10 value 316.012532
## iter  20 value 308.169912
## iter  30 value 307.941049
## iter  40 value 307.860771
## iter  50 value 307.564923
## iter  60 value 306.708072
## iter  70 value 306.570777
## iter  80 value 306.503356
## iter  90 value 306.138855
## iter 100 value 305.891287
## final  value 305.891287 
## stopped after 100 iterations
## # weights:  4
## initial  value 448.766588 
## final  value 351.834839 
## converged
## # weights:  10
## initial  value 372.876190 
## iter  10 value 351.835028
## final  value 351.835010 
## converged
## # weights:  16
## initial  value 476.150396 
## iter  10 value 351.823650
## iter  20 value 315.373518
## iter  30 value 304.529460
## iter  40 value 304.427054
## iter  50 value 304.414179
## iter  60 value 304.409569
## final  value 304.409038 
## converged
## # weights:  4
## initial  value 547.160904 
## final  value 351.951661 
## converged
## # weights:  10
## initial  value 546.108760 
## iter  10 value 322.371661
## iter  20 value 310.238536
## iter  30 value 308.574345
## iter  40 value 308.147361
## iter  50 value 307.906383
## iter  60 value 307.739418
## iter  70 value 307.721852
## iter  70 value 307.721850
## final  value 307.721850 
## converged
## # weights:  16
## initial  value 472.724239 
## iter  10 value 323.204076
## iter  20 value 309.096163
## iter  30 value 308.216122
## iter  40 value 307.850656
## iter  50 value 307.619054
## iter  60 value 307.601546
## iter  70 value 307.599351
## final  value 307.599344 
## converged
## # weights:  4
## initial  value 648.334141 
## final  value 351.835304 
## converged
## # weights:  10
## initial  value 370.834571 
## iter  10 value 351.835352
## iter  20 value 351.835092
## iter  30 value 341.129385
## iter  40 value 304.990032
## iter  50 value 304.557996
## iter  60 value 304.517626
## iter  70 value 304.474416
## iter  80 value 304.057282
## iter  90 value 303.625069
## iter 100 value 303.416798
## final  value 303.416798 
## stopped after 100 iterations
## # weights:  16
## initial  value 1021.932319 
## iter  10 value 351.835380
## iter  20 value 344.596214
## iter  30 value 306.021582
## iter  40 value 304.693620
## iter  50 value 304.545036
## iter  60 value 304.507705
## iter  70 value 304.492708
## iter  80 value 304.489020
## iter  90 value 304.478071
## iter 100 value 304.352216
## final  value 304.352216 
## stopped after 100 iterations
## # weights:  4
## initial  value 476.948937 
## final  value 351.835009 
## converged
## # weights:  10
## initial  value 449.525943 
## final  value 351.835113 
## converged
## # weights:  16
## initial  value 600.406244 
## iter  10 value 351.835106
## final  value 351.835020 
## converged
## # weights:  4
## initial  value 399.068161 
## iter  10 value 352.665564
## final  value 351.951579 
## converged
## # weights:  10
## initial  value 584.039959 
## iter  10 value 345.405962
## iter  20 value 310.431001
## iter  30 value 309.073075
## iter  40 value 308.960671
## final  value 308.955602 
## converged
## # weights:  16
## initial  value 552.513427 
## iter  10 value 349.023074
## iter  20 value 311.917003
## iter  30 value 309.272764
## iter  40 value 308.683686
## iter  50 value 308.337326
## iter  60 value 308.086091
## iter  70 value 307.986431
## iter  80 value 307.963601
## final  value 307.962522 
## converged
## # weights:  4
## initial  value 400.754350 
## iter  10 value 351.835193
## iter  10 value 351.835193
## final  value 351.835193 
## converged
## # weights:  10
## initial  value 427.690329 
## iter  10 value 350.236320
## iter  20 value 306.211624
## iter  30 value 305.598795
## iter  40 value 305.391642
## iter  50 value 305.361180
## iter  60 value 305.340790
## iter  70 value 305.328904
## iter  80 value 305.328046
## iter  90 value 305.325947
## final  value 305.325940 
## converged
## # weights:  16
## initial  value 610.609447 
## iter  10 value 306.176423
## iter  20 value 305.406686
## iter  30 value 305.365114
## final  value 305.365096 
## converged
## # weights:  4
## initial  value 692.084689 
## iter  10 value 353.451698
## final  value 353.451552 
## converged
## # weights:  10
## initial  value 768.189327 
## iter  10 value 353.451587
## final  value 353.451566 
## converged
## # weights:  16
## initial  value 551.935555 
## iter  10 value 353.451743
## final  value 353.451564 
## converged
## # weights:  4
## initial  value 404.724190 
## iter  10 value 353.605695
## final  value 353.567195 
## converged
## # weights:  10
## initial  value 444.233260 
## iter  10 value 353.099615
## iter  20 value 312.783555
## iter  30 value 311.511282
## iter  40 value 311.055229
## iter  50 value 310.650328
## iter  60 value 310.601601
## final  value 310.592980 
## converged
## # weights:  16
## initial  value 444.666082 
## iter  10 value 351.189412
## iter  20 value 315.887164
## iter  30 value 311.922031
## iter  40 value 311.614740
## iter  50 value 311.283104
## iter  60 value 310.895695
## iter  70 value 310.731302
## iter  80 value 310.635749
## iter  90 value 310.625171
## iter  90 value 310.625169
## iter  90 value 310.625169
## final  value 310.625169 
## converged
## # weights:  4
## initial  value 500.287005 
## final  value 353.452349 
## converged
## # weights:  10
## initial  value 387.526929 
## iter  10 value 315.629280
## iter  20 value 309.177297
## iter  30 value 307.904301
## iter  40 value 307.630977
## iter  50 value 307.573272
## iter  60 value 307.527739
## iter  70 value 307.506204
## iter  80 value 307.497722
## iter  90 value 307.486175
## final  value 307.485788 
## converged
## # weights:  16
## initial  value 432.948062 
## iter  10 value 335.858787
## iter  20 value 308.219354
## iter  30 value 307.538941
## final  value 307.537044 
## converged
## # weights:  4
## initial  value 404.346873 
## final  value 351.835017 
## converged
## # weights:  10
## initial  value 505.130648 
## iter  10 value 310.949878
## iter  20 value 306.854458
## iter  30 value 306.478051
## iter  40 value 306.381316
## iter  50 value 306.323722
## iter  60 value 306.304022
## iter  70 value 306.275378
## iter  80 value 306.268697
## iter  90 value 306.248822
## iter 100 value 306.246554
## final  value 306.246554 
## stopped after 100 iterations
## # weights:  16
## initial  value 648.058184 
## iter  10 value 351.835050
## iter  20 value 329.834736
## iter  30 value 306.855374
## iter  40 value 306.448550
## iter  50 value 306.383016
## iter  60 value 306.335405
## iter  70 value 306.283611
## iter  80 value 306.267803
## iter  90 value 306.253268
## iter 100 value 306.250901
## final  value 306.250901 
## stopped after 100 iterations
## # weights:  4
## initial  value 492.480081 
## iter  10 value 350.379595
## iter  20 value 311.628218
## final  value 310.590311 
## converged
## # weights:  10
## initial  value 713.530303 
## iter  10 value 357.062646
## iter  20 value 312.280336
## iter  30 value 310.673671
## iter  40 value 310.497470
## iter  50 value 310.256171
## iter  60 value 310.089747
## iter  70 value 310.052024
## iter  80 value 310.044412
## iter  90 value 310.041659
## final  value 310.041606 
## converged
## # weights:  16
## initial  value 559.222458 
## iter  10 value 350.056271
## iter  20 value 312.678624
## iter  30 value 310.571934
## iter  40 value 309.883878
## iter  50 value 309.521260
## iter  60 value 309.257301
## iter  70 value 309.138230
## iter  80 value 309.095737
## iter  90 value 309.091759
## iter  90 value 309.091757
## iter  90 value 309.091757
## final  value 309.091757 
## converged
## # weights:  4
## initial  value 659.474527 
## final  value 351.835294 
## converged
## # weights:  10
## initial  value 356.651676 
## iter  10 value 351.835326
## final  value 351.835319 
## converged
## # weights:  16
## initial  value 382.806100 
## iter  10 value 341.211297
## iter  20 value 307.293001
## iter  30 value 306.467236
## iter  40 value 306.423052
## iter  50 value 306.369125
## iter  60 value 306.352263
## iter  70 value 306.339645
## iter  80 value 306.334730
## iter  90 value 306.327405
## final  value 306.327038 
## converged
## # weights:  4
## initial  value 537.037647 
## iter  10 value 351.835028
## iter  10 value 351.835028
## final  value 351.835028 
## converged
## # weights:  10
## initial  value 588.821220 
## iter  10 value 351.826045
## iter  20 value 309.716363
## iter  30 value 308.801860
## iter  40 value 308.723635
## iter  50 value 308.652961
## iter  60 value 308.640252
## iter  70 value 308.632722
## iter  80 value 308.612826
## iter  90 value 308.607194
## iter 100 value 308.597076
## final  value 308.597076 
## stopped after 100 iterations
## # weights:  16
## initial  value 597.675900 
## final  value 351.835140 
## converged
## # weights:  4
## initial  value 485.890830 
## iter  10 value 351.171921
## iter  20 value 336.760363
## iter  30 value 312.839397
## final  value 312.838604 
## converged
## # weights:  10
## initial  value 518.903459 
## iter  10 value 325.168024
## iter  20 value 313.394117
## iter  30 value 312.340546
## iter  40 value 311.934341
## iter  50 value 311.803644
## iter  60 value 311.731155
## final  value 311.728129 
## converged
## # weights:  16
## initial  value 672.743267 
## iter  10 value 351.778523
## iter  20 value 337.313341
## iter  30 value 316.330468
## iter  40 value 312.416600
## iter  50 value 312.080969
## iter  60 value 311.818662
## iter  70 value 311.757074
## iter  80 value 311.736341
## final  value 311.735727 
## converged
## # weights:  4
## initial  value 550.279529 
## iter  10 value 346.186691
## iter  20 value 310.313884
## iter  30 value 309.099870
## iter  40 value 308.841848
## iter  50 value 308.746192
## iter  60 value 308.715480
## final  value 308.710867 
## converged
## # weights:  10
## initial  value 369.157759 
## iter  10 value 351.845362
## iter  20 value 351.842538
## final  value 351.836606 
## converged
## # weights:  16
## initial  value 462.185376 
## iter  10 value 351.830235
## iter  20 value 331.837876
## iter  30 value 308.963216
## iter  40 value 308.775891
## iter  50 value 308.769072
## iter  60 value 308.701168
## iter  70 value 308.692978
## iter  80 value 308.679761
## final  value 308.676837 
## converged
## # weights:  4
## initial  value 594.522033 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 364.090495 
## iter  10 value 342.131061
## iter  20 value 305.195598
## iter  30 value 302.961090
## iter  40 value 302.751748
## iter  50 value 302.741358
## iter  60 value 302.702580
## iter  70 value 302.670671
## iter  80 value 302.666741
## iter  90 value 302.642439
## iter 100 value 302.640228
## final  value 302.640228 
## stopped after 100 iterations
## # weights:  16
## initial  value 419.666058 
## iter  10 value 336.291049
## iter  20 value 320.255655
## iter  30 value 311.994237
## iter  40 value 300.159901
## iter  50 value 299.059316
## iter  60 value 298.693664
## iter  70 value 297.870330
## iter  80 value 297.322704
## iter  90 value 297.214323
## iter 100 value 297.167230
## final  value 297.167230 
## stopped after 100 iterations
## # weights:  4
## initial  value 618.279700 
## iter  10 value 353.225091
## iter  20 value 308.093918
## final  value 307.729294 
## converged
## # weights:  10
## initial  value 411.092806 
## iter  10 value 353.465461
## iter  20 value 314.821011
## iter  30 value 308.150220
## iter  40 value 307.496994
## iter  50 value 306.954197
## iter  60 value 306.625905
## iter  70 value 306.401383
## iter  80 value 306.349193
## iter  90 value 306.342957
## final  value 306.342945 
## converged
## # weights:  16
## initial  value 410.455146 
## iter  10 value 349.670815
## iter  20 value 311.741084
## iter  30 value 307.037995
## iter  40 value 306.355595
## iter  50 value 306.180291
## iter  60 value 305.927778
## iter  70 value 305.889547
## final  value 305.880030 
## converged
## # weights:  4
## initial  value 458.423802 
## final  value 353.452533 
## converged
## # weights:  10
## initial  value 585.050283 
## final  value 353.451540 
## converged
## # weights:  16
## initial  value 796.579735 
## iter  10 value 353.451159
## iter  10 value 353.451157
## final  value 353.451157 
## converged
## # weights:  4
## initial  value 611.643907 
## final  value 351.835016 
## converged
## # weights:  10
## initial  value 1105.033238 
## final  value 351.835032 
## converged
## # weights:  16
## initial  value 711.732673 
## iter  10 value 351.860552
## iter  20 value 345.514677
## iter  30 value 305.143478
## iter  40 value 304.699778
## iter  50 value 304.492949
## iter  60 value 303.693698
## iter  70 value 303.452083
## iter  80 value 303.302036
## iter  90 value 303.252382
## iter 100 value 303.224976
## final  value 303.224976 
## stopped after 100 iterations
## # weights:  4
## initial  value 576.476370 
## final  value 351.951606 
## converged
## # weights:  10
## initial  value 428.176573 
## iter  10 value 349.449243
## iter  20 value 308.896038
## iter  30 value 308.602189
## iter  40 value 308.392349
## iter  50 value 308.327493
## final  value 308.327124 
## converged
## # weights:  16
## initial  value 535.197788 
## iter  10 value 350.664329
## iter  20 value 315.428380
## iter  30 value 308.562271
## iter  40 value 308.284195
## iter  50 value 308.198528
## iter  60 value 307.964047
## iter  70 value 307.587416
## iter  80 value 307.394501
## iter  90 value 307.334929
## iter 100 value 307.284273
## final  value 307.284273 
## stopped after 100 iterations
## # weights:  4
## initial  value 473.622012 
## iter  10 value 351.837733
## final  value 351.836488 
## converged
## # weights:  10
## initial  value 487.929980 
## iter  10 value 351.837124
## final  value 351.835859 
## converged
## # weights:  16
## initial  value 361.334666 
## iter  10 value 318.655461
## iter  20 value 305.430308
## iter  30 value 304.791548
## iter  40 value 304.728725
## iter  50 value 304.659343
## iter  60 value 304.633704
## iter  70 value 304.621107
## final  value 304.555423 
## converged
## # weights:  4
## initial  value 457.531460 
## final  value 353.451549 
## converged
## # weights:  10
## initial  value 580.355861 
## iter  10 value 353.451575
## final  value 353.451447 
## converged
## # weights:  16
## initial  value 450.271029 
## iter  10 value 350.949705
## iter  20 value 304.146542
## iter  30 value 303.271100
## iter  40 value 303.211435
## iter  50 value 303.132279
## iter  60 value 303.082733
## iter  70 value 303.055567
## iter  80 value 303.014554
## iter  90 value 302.950375
## iter 100 value 302.215787
## final  value 302.215787 
## stopped after 100 iterations
## # weights:  4
## initial  value 453.819945 
## final  value 353.567359 
## converged
## # weights:  10
## initial  value 675.599902 
## iter  10 value 323.002546
## iter  20 value 308.149401
## iter  30 value 307.728453
## iter  40 value 307.257303
## iter  50 value 306.842859
## iter  60 value 306.619149
## iter  70 value 306.556011
## final  value 306.555577 
## converged
## # weights:  16
## initial  value 804.293159 
## iter  10 value 332.781032
## iter  20 value 308.376082
## iter  30 value 307.219883
## iter  40 value 306.872199
## iter  50 value 306.575541
## iter  60 value 306.525905
## iter  70 value 306.522870
## iter  70 value 306.522869
## iter  70 value 306.522869
## final  value 306.522869 
## converged
## # weights:  4
## initial  value 434.459070 
## final  value 353.452910 
## converged
## # weights:  10
## initial  value 355.504112 
## iter  10 value 352.422991
## iter  20 value 303.879299
## iter  30 value 303.291412
## iter  40 value 303.164034
## iter  50 value 303.125372
## iter  60 value 303.115555
## iter  70 value 303.114164
## final  value 303.113378 
## converged
## # weights:  16
## initial  value 522.862790 
## iter  10 value 340.863142
## iter  20 value 305.617442
## iter  30 value 303.565152
## iter  40 value 303.275164
## iter  50 value 303.135944
## iter  60 value 303.028580
## iter  70 value 302.293949
## iter  80 value 301.913706
## iter  90 value 301.337658
## iter 100 value 300.654780
## final  value 300.654780 
## stopped after 100 iterations
## # weights:  16
## initial  value 400.296220 
## iter  10 value 361.030075
## iter  20 value 345.231166
## iter  30 value 343.797286
## iter  40 value 343.375311
## iter  50 value 342.983294
## iter  60 value 342.789364
## iter  70 value 342.649053
## iter  80 value 342.462723
## iter  90 value 342.448107
## iter 100 value 342.431308
## final  value 342.431308 
## stopped after 100 iterations
ann_model
## Neural Network 
## 
## 786 samples
##   1 predictor
##   2 classes: 'bad', 'good' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times) 
## Summary of sample sizes: 707, 708, 707, 707, 708, 708, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  ROC        Sens         Spec     
##   1     0e+00  0.5267718  0.007666667  0.9965079
##   1     1e-04  0.5065370  0.008916667  0.9980952
##   1     1e-01  0.5167989  0.007666667  0.9984127
##   3     0e+00  0.5896376  0.016666667  0.9974603
##   3     1e-04  0.6031706  0.033250000  0.9923810
##   3     1e-01  0.7255509  0.039583333  0.9946032
##   5     0e+00  0.6854934  0.048333333  0.9901587
##   5     1e-04  0.7225311  0.058833333  0.9898413
##   5     1e-01  0.7386409  0.039583333  0.9930159
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were size = 5 and decay = 0.1.
ann_pred <- predict(ann_model, testset, type = "prob")

ann_measures <- fpr_tpr(p = ann_pred$good, dataset = testset)
plot(ann_measures$fpr, ann_measures$tpr, type = "l", col = 2,
     ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)

In the end, we look at the boost model.

It also tune parameters “interaction.depth” and “n.trees”, then chose the optimal models by the largest auc value.

After tune the cut-off point, the performance of the boost model is slight better.

### tune boosting
boost_model <- train(play.type ~ yards, data = trainset,
                     method = "gbm",
                     trControl = ctrl)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9734             nan     0.1000    0.0089
##      2        0.9606             nan     0.1000    0.0076
##      3        0.9433             nan     0.1000    0.0057
##      4        0.9331             nan     0.1000    0.0043
##      5        0.9244             nan     0.1000    0.0040
##      6        0.9165             nan     0.1000    0.0027
##      7        0.9100             nan     0.1000    0.0018
##      8        0.9051             nan     0.1000    0.0020
##      9        0.8982             nan     0.1000    0.0012
##     10        0.8929             nan     0.1000    0.0024
##     20        0.8620             nan     0.1000    0.0015
##     40        0.8442             nan     0.1000   -0.0002
##     60        0.8381             nan     0.1000   -0.0004
##     80        0.8366             nan     0.1000   -0.0002
##    100        0.8342             nan     0.1000   -0.0006
##    120        0.8307             nan     0.1000   -0.0004
##    140        0.8285             nan     0.1000   -0.0001
##    150        0.8275             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9657             nan     0.1000    0.0095
##      2        0.9441             nan     0.1000    0.0072
##      3        0.9282             nan     0.1000    0.0075
##      4        0.9162             nan     0.1000    0.0044
##      5        0.9089             nan     0.1000    0.0032
##      6        0.8996             nan     0.1000    0.0034
##      7        0.8914             nan     0.1000    0.0033
##      8        0.8853             nan     0.1000    0.0030
##      9        0.8812             nan     0.1000    0.0004
##     10        0.8766             nan     0.1000    0.0019
##     20        0.8480             nan     0.1000   -0.0001
##     40        0.8317             nan     0.1000   -0.0010
##     60        0.8233             nan     0.1000   -0.0007
##     80        0.8186             nan     0.1000   -0.0022
##    100        0.8167             nan     0.1000   -0.0009
##    120        0.8150             nan     0.1000   -0.0006
##    140        0.8142             nan     0.1000   -0.0006
##    150        0.8130             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9662             nan     0.1000    0.0119
##      2        0.9420             nan     0.1000    0.0103
##      3        0.9262             nan     0.1000    0.0067
##      4        0.9138             nan     0.1000    0.0055
##      5        0.9021             nan     0.1000    0.0046
##      6        0.8933             nan     0.1000    0.0024
##      7        0.8863             nan     0.1000    0.0023
##      8        0.8803             nan     0.1000    0.0015
##      9        0.8748             nan     0.1000    0.0015
##     10        0.8669             nan     0.1000    0.0018
##     20        0.8401             nan     0.1000   -0.0005
##     40        0.8243             nan     0.1000   -0.0018
##     60        0.8161             nan     0.1000   -0.0018
##     80        0.8137             nan     0.1000   -0.0009
##    100        0.8124             nan     0.1000   -0.0017
##    120        0.8112             nan     0.1000   -0.0013
##    140        0.8115             nan     0.1000   -0.0016
##    150        0.8101             nan     0.1000   -0.0019
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9812             nan     0.1000    0.0079
##      2        0.9705             nan     0.1000    0.0032
##      3        0.9580             nan     0.1000    0.0067
##      4        0.9482             nan     0.1000    0.0051
##      5        0.9382             nan     0.1000    0.0038
##      6        0.9303             nan     0.1000    0.0025
##      7        0.9234             nan     0.1000    0.0022
##      8        0.9156             nan     0.1000    0.0024
##      9        0.9089             nan     0.1000    0.0021
##     10        0.9036             nan     0.1000    0.0018
##     20        0.8756             nan     0.1000   -0.0003
##     40        0.8660             nan     0.1000   -0.0011
##     60        0.8605             nan     0.1000    0.0004
##     80        0.8561             nan     0.1000   -0.0000
##    100        0.8549             nan     0.1000   -0.0006
##    120        0.8523             nan     0.1000   -0.0004
##    140        0.8522             nan     0.1000   -0.0003
##    150        0.8518             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9774             nan     0.1000    0.0106
##      2        0.9608             nan     0.1000    0.0060
##      3        0.9456             nan     0.1000    0.0078
##      4        0.9312             nan     0.1000    0.0049
##      5        0.9207             nan     0.1000    0.0047
##      6        0.9123             nan     0.1000    0.0034
##      7        0.9073             nan     0.1000    0.0017
##      8        0.9002             nan     0.1000    0.0023
##      9        0.8981             nan     0.1000   -0.0006
##     10        0.8921             nan     0.1000    0.0012
##     20        0.8697             nan     0.1000    0.0003
##     40        0.8576             nan     0.1000   -0.0001
##     60        0.8497             nan     0.1000    0.0003
##     80        0.8454             nan     0.1000   -0.0006
##    100        0.8442             nan     0.1000   -0.0007
##    120        0.8423             nan     0.1000   -0.0004
##    140        0.8419             nan     0.1000   -0.0010
##    150        0.8420             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9750             nan     0.1000    0.0099
##      2        0.9561             nan     0.1000    0.0068
##      3        0.9418             nan     0.1000    0.0061
##      4        0.9297             nan     0.1000    0.0041
##      5        0.9186             nan     0.1000    0.0022
##      6        0.9089             nan     0.1000    0.0040
##      7        0.9024             nan     0.1000    0.0012
##      8        0.8971             nan     0.1000    0.0012
##      9        0.8930             nan     0.1000    0.0011
##     10        0.8890             nan     0.1000   -0.0008
##     20        0.8635             nan     0.1000    0.0003
##     40        0.8487             nan     0.1000   -0.0008
##     60        0.8424             nan     0.1000   -0.0011
##     80        0.8395             nan     0.1000   -0.0017
##    100        0.8376             nan     0.1000   -0.0020
##    120        0.8363             nan     0.1000   -0.0028
##    140        0.8359             nan     0.1000   -0.0009
##    150        0.8356             nan     0.1000   -0.0021
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9807             nan     0.1000    0.0071
##      2        0.9635             nan     0.1000    0.0073
##      3        0.9484             nan     0.1000    0.0064
##      4        0.9385             nan     0.1000    0.0052
##      5        0.9326             nan     0.1000    0.0027
##      6        0.9233             nan     0.1000    0.0026
##      7        0.9131             nan     0.1000    0.0024
##      8        0.9062             nan     0.1000    0.0028
##      9        0.8989             nan     0.1000    0.0027
##     10        0.8940             nan     0.1000    0.0013
##     20        0.8694             nan     0.1000   -0.0000
##     40        0.8524             nan     0.1000   -0.0001
##     60        0.8447             nan     0.1000   -0.0005
##     80        0.8430             nan     0.1000   -0.0012
##    100        0.8394             nan     0.1000   -0.0004
##    120        0.8380             nan     0.1000   -0.0005
##    140        0.8363             nan     0.1000   -0.0006
##    150        0.8349             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9771             nan     0.1000    0.0113
##      2        0.9556             nan     0.1000    0.0081
##      3        0.9376             nan     0.1000    0.0054
##      4        0.9254             nan     0.1000    0.0060
##      5        0.9147             nan     0.1000    0.0056
##      6        0.9071             nan     0.1000    0.0034
##      7        0.8998             nan     0.1000    0.0011
##      8        0.8938             nan     0.1000    0.0020
##      9        0.8877             nan     0.1000    0.0016
##     10        0.8824             nan     0.1000    0.0026
##     20        0.8564             nan     0.1000   -0.0005
##     40        0.8371             nan     0.1000   -0.0007
##     60        0.8331             nan     0.1000   -0.0006
##     80        0.8286             nan     0.1000   -0.0012
##    100        0.8254             nan     0.1000   -0.0006
##    120        0.8242             nan     0.1000   -0.0004
##    140        0.8233             nan     0.1000   -0.0010
##    150        0.8220             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9737             nan     0.1000    0.0100
##      2        0.9529             nan     0.1000    0.0075
##      3        0.9348             nan     0.1000    0.0082
##      4        0.9210             nan     0.1000    0.0053
##      5        0.9100             nan     0.1000    0.0052
##      6        0.8985             nan     0.1000    0.0041
##      7        0.8900             nan     0.1000    0.0016
##      8        0.8846             nan     0.1000    0.0013
##      9        0.8808             nan     0.1000   -0.0009
##     10        0.8754             nan     0.1000    0.0023
##     20        0.8487             nan     0.1000   -0.0005
##     40        0.8313             nan     0.1000   -0.0008
##     60        0.8277             nan     0.1000   -0.0006
##     80        0.8247             nan     0.1000   -0.0009
##    100        0.8206             nan     0.1000   -0.0008
##    120        0.8192             nan     0.1000   -0.0017
##    140        0.8190             nan     0.1000   -0.0005
##    150        0.8184             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9737             nan     0.1000    0.0113
##      2        0.9570             nan     0.1000    0.0071
##      3        0.9440             nan     0.1000    0.0051
##      4        0.9323             nan     0.1000    0.0048
##      5        0.9232             nan     0.1000    0.0050
##      6        0.9171             nan     0.1000    0.0024
##      7        0.9108             nan     0.1000    0.0034
##      8        0.9036             nan     0.1000    0.0032
##      9        0.8953             nan     0.1000    0.0019
##     10        0.8913             nan     0.1000    0.0021
##     20        0.8621             nan     0.1000    0.0002
##     40        0.8474             nan     0.1000   -0.0008
##     60        0.8420             nan     0.1000   -0.0005
##     80        0.8392             nan     0.1000   -0.0005
##    100        0.8370             nan     0.1000   -0.0000
##    120        0.8343             nan     0.1000   -0.0006
##    140        0.8332             nan     0.1000   -0.0002
##    150        0.8330             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9703             nan     0.1000    0.0110
##      2        0.9472             nan     0.1000    0.0076
##      3        0.9321             nan     0.1000    0.0070
##      4        0.9211             nan     0.1000    0.0059
##      5        0.9079             nan     0.1000    0.0056
##      6        0.8988             nan     0.1000    0.0039
##      7        0.8927             nan     0.1000    0.0031
##      8        0.8855             nan     0.1000    0.0018
##      9        0.8802             nan     0.1000    0.0025
##     10        0.8745             nan     0.1000    0.0009
##     20        0.8482             nan     0.1000   -0.0001
##     40        0.8362             nan     0.1000   -0.0001
##     60        0.8308             nan     0.1000   -0.0012
##     80        0.8265             nan     0.1000   -0.0003
##    100        0.8239             nan     0.1000   -0.0008
##    120        0.8224             nan     0.1000   -0.0003
##    140        0.8216             nan     0.1000   -0.0003
##    150        0.8204             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9748             nan     0.1000    0.0085
##      2        0.9483             nan     0.1000    0.0100
##      3        0.9315             nan     0.1000    0.0066
##      4        0.9169             nan     0.1000    0.0069
##      5        0.9059             nan     0.1000    0.0051
##      6        0.8959             nan     0.1000    0.0039
##      7        0.8869             nan     0.1000    0.0043
##      8        0.8794             nan     0.1000    0.0036
##      9        0.8731             nan     0.1000    0.0024
##     10        0.8698             nan     0.1000    0.0004
##     20        0.8446             nan     0.1000   -0.0009
##     40        0.8291             nan     0.1000   -0.0016
##     60        0.8244             nan     0.1000   -0.0008
##     80        0.8216             nan     0.1000   -0.0016
##    100        0.8187             nan     0.1000   -0.0020
##    120        0.8170             nan     0.1000   -0.0003
##    140        0.8155             nan     0.1000   -0.0012
##    150        0.8157             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9770             nan     0.1000    0.0078
##      2        0.9631             nan     0.1000    0.0074
##      3        0.9525             nan     0.1000    0.0049
##      4        0.9404             nan     0.1000    0.0051
##      5        0.9312             nan     0.1000    0.0042
##      6        0.9222             nan     0.1000    0.0035
##      7        0.9141             nan     0.1000    0.0031
##      8        0.9079             nan     0.1000    0.0020
##      9        0.9028             nan     0.1000    0.0015
##     10        0.8983             nan     0.1000    0.0011
##     20        0.8703             nan     0.1000    0.0001
##     40        0.8525             nan     0.1000   -0.0012
##     60        0.8480             nan     0.1000   -0.0004
##     80        0.8462             nan     0.1000   -0.0012
##    100        0.8430             nan     0.1000   -0.0003
##    120        0.8412             nan     0.1000   -0.0005
##    140        0.8390             nan     0.1000   -0.0001
##    150        0.8382             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9735             nan     0.1000    0.0107
##      2        0.9543             nan     0.1000    0.0074
##      3        0.9383             nan     0.1000    0.0068
##      4        0.9275             nan     0.1000    0.0026
##      5        0.9152             nan     0.1000    0.0042
##      6        0.9052             nan     0.1000    0.0044
##      7        0.8978             nan     0.1000    0.0029
##      8        0.8919             nan     0.1000    0.0020
##      9        0.8848             nan     0.1000    0.0025
##     10        0.8793             nan     0.1000    0.0027
##     20        0.8539             nan     0.1000   -0.0013
##     40        0.8385             nan     0.1000   -0.0012
##     60        0.8347             nan     0.1000   -0.0008
##     80        0.8303             nan     0.1000   -0.0012
##    100        0.8265             nan     0.1000   -0.0010
##    120        0.8256             nan     0.1000   -0.0007
##    140        0.8239             nan     0.1000   -0.0004
##    150        0.8243             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9699             nan     0.1000    0.0102
##      2        0.9479             nan     0.1000    0.0101
##      3        0.9284             nan     0.1000    0.0041
##      4        0.9162             nan     0.1000    0.0057
##      5        0.9065             nan     0.1000    0.0028
##      6        0.8975             nan     0.1000    0.0039
##      7        0.8917             nan     0.1000    0.0018
##      8        0.8842             nan     0.1000    0.0001
##      9        0.8791             nan     0.1000    0.0016
##     10        0.8737             nan     0.1000    0.0012
##     20        0.8462             nan     0.1000   -0.0004
##     40        0.8315             nan     0.1000   -0.0011
##     60        0.8268             nan     0.1000   -0.0009
##     80        0.8253             nan     0.1000   -0.0012
##    100        0.8236             nan     0.1000   -0.0010
##    120        0.8231             nan     0.1000   -0.0020
##    140        0.8220             nan     0.1000   -0.0019
##    150        0.8211             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9799             nan     0.1000    0.0078
##      2        0.9633             nan     0.1000    0.0073
##      3        0.9528             nan     0.1000    0.0059
##      4        0.9470             nan     0.1000    0.0008
##      5        0.9359             nan     0.1000    0.0047
##      6        0.9267             nan     0.1000    0.0027
##      7        0.9178             nan     0.1000    0.0033
##      8        0.9123             nan     0.1000    0.0008
##      9        0.9082             nan     0.1000    0.0003
##     10        0.9030             nan     0.1000    0.0022
##     20        0.8716             nan     0.1000   -0.0007
##     40        0.8599             nan     0.1000   -0.0008
##     60        0.8544             nan     0.1000   -0.0010
##     80        0.8515             nan     0.1000   -0.0002
##    100        0.8504             nan     0.1000   -0.0012
##    120        0.8479             nan     0.1000   -0.0002
##    140        0.8465             nan     0.1000   -0.0001
##    150        0.8458             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9802             nan     0.1000    0.0084
##      2        0.9640             nan     0.1000    0.0084
##      3        0.9491             nan     0.1000    0.0064
##      4        0.9325             nan     0.1000    0.0045
##      5        0.9207             nan     0.1000    0.0043
##      6        0.9115             nan     0.1000    0.0036
##      7        0.9046             nan     0.1000    0.0026
##      8        0.9001             nan     0.1000    0.0025
##      9        0.8936             nan     0.1000    0.0022
##     10        0.8880             nan     0.1000    0.0021
##     20        0.8629             nan     0.1000    0.0007
##     40        0.8486             nan     0.1000   -0.0004
##     60        0.8451             nan     0.1000   -0.0017
##     80        0.8421             nan     0.1000   -0.0011
##    100        0.8406             nan     0.1000   -0.0007
##    120        0.8388             nan     0.1000   -0.0009
##    140        0.8372             nan     0.1000   -0.0014
##    150        0.8364             nan     0.1000   -0.0024
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9759             nan     0.1000    0.0101
##      2        0.9579             nan     0.1000    0.0078
##      3        0.9365             nan     0.1000    0.0069
##      4        0.9234             nan     0.1000    0.0057
##      5        0.9143             nan     0.1000    0.0035
##      6        0.9098             nan     0.1000   -0.0002
##      7        0.9013             nan     0.1000    0.0039
##      8        0.8946             nan     0.1000    0.0015
##      9        0.8880             nan     0.1000    0.0026
##     10        0.8825             nan     0.1000    0.0022
##     20        0.8576             nan     0.1000   -0.0004
##     40        0.8421             nan     0.1000   -0.0022
##     60        0.8380             nan     0.1000   -0.0012
##     80        0.8362             nan     0.1000   -0.0009
##    100        0.8329             nan     0.1000   -0.0013
##    120        0.8324             nan     0.1000   -0.0009
##    140        0.8337             nan     0.1000   -0.0014
##    150        0.8323             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9757             nan     0.1000    0.0093
##      2        0.9628             nan     0.1000    0.0069
##      3        0.9492             nan     0.1000    0.0062
##      4        0.9368             nan     0.1000    0.0036
##      5        0.9284             nan     0.1000    0.0036
##      6        0.9224             nan     0.1000    0.0022
##      7        0.9158             nan     0.1000    0.0020
##      8        0.9117             nan     0.1000    0.0020
##      9        0.9054             nan     0.1000    0.0025
##     10        0.9000             nan     0.1000    0.0012
##     20        0.8754             nan     0.1000    0.0001
##     40        0.8603             nan     0.1000   -0.0002
##     60        0.8572             nan     0.1000   -0.0004
##     80        0.8528             nan     0.1000   -0.0002
##    100        0.8493             nan     0.1000   -0.0003
##    120        0.8468             nan     0.1000   -0.0011
##    140        0.8443             nan     0.1000   -0.0004
##    150        0.8436             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9682             nan     0.1000    0.0081
##      2        0.9511             nan     0.1000    0.0060
##      3        0.9387             nan     0.1000    0.0065
##      4        0.9270             nan     0.1000    0.0058
##      5        0.9164             nan     0.1000    0.0041
##      6        0.9063             nan     0.1000    0.0037
##      7        0.8999             nan     0.1000    0.0026
##      8        0.8947             nan     0.1000    0.0023
##      9        0.8902             nan     0.1000    0.0020
##     10        0.8847             nan     0.1000    0.0016
##     20        0.8640             nan     0.1000   -0.0002
##     40        0.8503             nan     0.1000   -0.0007
##     60        0.8417             nan     0.1000   -0.0007
##     80        0.8355             nan     0.1000   -0.0004
##    100        0.8326             nan     0.1000   -0.0005
##    120        0.8290             nan     0.1000   -0.0017
##    140        0.8287             nan     0.1000   -0.0009
##    150        0.8276             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9672             nan     0.1000    0.0104
##      2        0.9531             nan     0.1000    0.0063
##      3        0.9379             nan     0.1000    0.0063
##      4        0.9242             nan     0.1000    0.0057
##      5        0.9117             nan     0.1000    0.0045
##      6        0.9039             nan     0.1000    0.0025
##      7        0.8956             nan     0.1000    0.0027
##      8        0.8889             nan     0.1000    0.0009
##      9        0.8847             nan     0.1000    0.0012
##     10        0.8789             nan     0.1000    0.0006
##     20        0.8535             nan     0.1000   -0.0016
##     40        0.8382             nan     0.1000   -0.0004
##     60        0.8331             nan     0.1000   -0.0009
##     80        0.8288             nan     0.1000   -0.0007
##    100        0.8272             nan     0.1000   -0.0011
##    120        0.8251             nan     0.1000   -0.0013
##    140        0.8247             nan     0.1000   -0.0023
##    150        0.8243             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9746             nan     0.1000    0.0110
##      2        0.9575             nan     0.1000    0.0086
##      3        0.9428             nan     0.1000    0.0058
##      4        0.9294             nan     0.1000    0.0056
##      5        0.9242             nan     0.1000    0.0015
##      6        0.9156             nan     0.1000    0.0041
##      7        0.9080             nan     0.1000    0.0029
##      8        0.8993             nan     0.1000    0.0018
##      9        0.8918             nan     0.1000    0.0026
##     10        0.8861             nan     0.1000    0.0028
##     20        0.8572             nan     0.1000   -0.0004
##     40        0.8395             nan     0.1000   -0.0006
##     60        0.8368             nan     0.1000   -0.0009
##     80        0.8327             nan     0.1000   -0.0003
##    100        0.8295             nan     0.1000   -0.0004
##    120        0.8279             nan     0.1000   -0.0007
##    140        0.8262             nan     0.1000   -0.0003
##    150        0.8250             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9683             nan     0.1000    0.0115
##      2        0.9460             nan     0.1000    0.0080
##      3        0.9278             nan     0.1000    0.0078
##      4        0.9133             nan     0.1000    0.0046
##      5        0.9034             nan     0.1000    0.0037
##      6        0.8919             nan     0.1000    0.0032
##      7        0.8839             nan     0.1000    0.0017
##      8        0.8779             nan     0.1000    0.0030
##      9        0.8718             nan     0.1000    0.0023
##     10        0.8669             nan     0.1000    0.0019
##     20        0.8441             nan     0.1000   -0.0002
##     40        0.8337             nan     0.1000   -0.0004
##     60        0.8268             nan     0.1000   -0.0005
##     80        0.8219             nan     0.1000   -0.0020
##    100        0.8177             nan     0.1000   -0.0010
##    120        0.8161             nan     0.1000   -0.0024
##    140        0.8150             nan     0.1000   -0.0015
##    150        0.8136             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9655             nan     0.1000    0.0135
##      2        0.9451             nan     0.1000    0.0094
##      3        0.9259             nan     0.1000    0.0074
##      4        0.9126             nan     0.1000    0.0055
##      5        0.8996             nan     0.1000    0.0053
##      6        0.8926             nan     0.1000    0.0032
##      7        0.8837             nan     0.1000    0.0023
##      8        0.8773             nan     0.1000    0.0011
##      9        0.8718             nan     0.1000    0.0017
##     10        0.8664             nan     0.1000    0.0017
##     20        0.8405             nan     0.1000   -0.0021
##     40        0.8237             nan     0.1000   -0.0014
##     60        0.8162             nan     0.1000   -0.0021
##     80        0.8139             nan     0.1000   -0.0008
##    100        0.8119             nan     0.1000   -0.0008
##    120        0.8106             nan     0.1000   -0.0015
##    140        0.8100             nan     0.1000   -0.0011
##    150        0.8093             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9783             nan     0.1000    0.0086
##      2        0.9632             nan     0.1000    0.0070
##      3        0.9480             nan     0.1000    0.0051
##      4        0.9366             nan     0.1000    0.0046
##      5        0.9299             nan     0.1000    0.0031
##      6        0.9210             nan     0.1000    0.0036
##      7        0.9141             nan     0.1000    0.0029
##      8        0.9085             nan     0.1000    0.0022
##      9        0.9055             nan     0.1000    0.0006
##     10        0.9009             nan     0.1000    0.0023
##     20        0.8723             nan     0.1000    0.0007
##     40        0.8640             nan     0.1000   -0.0000
##     60        0.8599             nan     0.1000   -0.0014
##     80        0.8568             nan     0.1000   -0.0002
##    100        0.8547             nan     0.1000   -0.0009
##    120        0.8542             nan     0.1000   -0.0003
##    140        0.8537             nan     0.1000   -0.0003
##    150        0.8527             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0100
##      2        0.9562             nan     0.1000    0.0083
##      3        0.9418             nan     0.1000    0.0058
##      4        0.9295             nan     0.1000    0.0035
##      5        0.9196             nan     0.1000    0.0041
##      6        0.9116             nan     0.1000    0.0038
##      7        0.9029             nan     0.1000    0.0028
##      8        0.8959             nan     0.1000    0.0021
##      9        0.8906             nan     0.1000    0.0018
##     10        0.8871             nan     0.1000    0.0017
##     20        0.8658             nan     0.1000    0.0009
##     40        0.8543             nan     0.1000   -0.0012
##     60        0.8495             nan     0.1000   -0.0006
##     80        0.8460             nan     0.1000   -0.0017
##    100        0.8440             nan     0.1000   -0.0014
##    120        0.8435             nan     0.1000   -0.0003
##    140        0.8429             nan     0.1000   -0.0005
##    150        0.8421             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9769             nan     0.1000    0.0093
##      2        0.9621             nan     0.1000    0.0064
##      3        0.9448             nan     0.1000    0.0050
##      4        0.9316             nan     0.1000    0.0064
##      5        0.9201             nan     0.1000    0.0035
##      6        0.9111             nan     0.1000    0.0036
##      7        0.9035             nan     0.1000    0.0007
##      8        0.8958             nan     0.1000    0.0035
##      9        0.8897             nan     0.1000    0.0019
##     10        0.8865             nan     0.1000    0.0005
##     20        0.8648             nan     0.1000   -0.0011
##     40        0.8507             nan     0.1000   -0.0004
##     60        0.8462             nan     0.1000   -0.0008
##     80        0.8450             nan     0.1000   -0.0012
##    100        0.8432             nan     0.1000   -0.0019
##    120        0.8439             nan     0.1000   -0.0021
##    140        0.8422             nan     0.1000   -0.0010
##    150        0.8420             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9751             nan     0.1000    0.0085
##      2        0.9606             nan     0.1000    0.0068
##      3        0.9471             nan     0.1000    0.0053
##      4        0.9367             nan     0.1000    0.0035
##      5        0.9283             nan     0.1000    0.0032
##      6        0.9204             nan     0.1000    0.0033
##      7        0.9164             nan     0.1000    0.0009
##      8        0.9092             nan     0.1000    0.0027
##      9        0.9034             nan     0.1000    0.0022
##     10        0.8980             nan     0.1000    0.0027
##     20        0.8722             nan     0.1000    0.0002
##     40        0.8634             nan     0.1000   -0.0004
##     60        0.8577             nan     0.1000   -0.0008
##     80        0.8560             nan     0.1000   -0.0003
##    100        0.8545             nan     0.1000   -0.0008
##    120        0.8515             nan     0.1000   -0.0005
##    140        0.8509             nan     0.1000   -0.0000
##    150        0.8492             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9697             nan     0.1000    0.0086
##      2        0.9534             nan     0.1000    0.0060
##      3        0.9378             nan     0.1000    0.0071
##      4        0.9273             nan     0.1000    0.0046
##      5        0.9176             nan     0.1000    0.0027
##      6        0.9088             nan     0.1000    0.0031
##      7        0.9014             nan     0.1000    0.0036
##      8        0.8948             nan     0.1000    0.0018
##      9        0.8888             nan     0.1000    0.0022
##     10        0.8850             nan     0.1000    0.0014
##     20        0.8648             nan     0.1000   -0.0007
##     40        0.8516             nan     0.1000   -0.0005
##     60        0.8467             nan     0.1000   -0.0006
##     80        0.8411             nan     0.1000   -0.0009
##    100        0.8378             nan     0.1000   -0.0002
##    120        0.8357             nan     0.1000   -0.0003
##    140        0.8344             nan     0.1000   -0.0020
##    150        0.8327             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9688             nan     0.1000    0.0099
##      2        0.9528             nan     0.1000    0.0075
##      3        0.9359             nan     0.1000    0.0060
##      4        0.9223             nan     0.1000    0.0038
##      5        0.9151             nan     0.1000    0.0040
##      6        0.9065             nan     0.1000    0.0032
##      7        0.8981             nan     0.1000    0.0030
##      8        0.8906             nan     0.1000    0.0025
##      9        0.8859             nan     0.1000    0.0003
##     10        0.8813             nan     0.1000    0.0014
##     20        0.8571             nan     0.1000    0.0003
##     40        0.8460             nan     0.1000   -0.0025
##     60        0.8384             nan     0.1000   -0.0020
##     80        0.8360             nan     0.1000   -0.0007
##    100        0.8321             nan     0.1000   -0.0006
##    120        0.8334             nan     0.1000   -0.0013
##    140        0.8329             nan     0.1000   -0.0008
##    150        0.8318             nan     0.1000   -0.0017
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9735             nan     0.1000    0.0104
##      2        0.9553             nan     0.1000    0.0072
##      3        0.9434             nan     0.1000    0.0025
##      4        0.9313             nan     0.1000    0.0053
##      5        0.9227             nan     0.1000    0.0010
##      6        0.9153             nan     0.1000    0.0028
##      7        0.9105             nan     0.1000    0.0006
##      8        0.9022             nan     0.1000    0.0031
##      9        0.8966             nan     0.1000    0.0027
##     10        0.8888             nan     0.1000    0.0018
##     20        0.8607             nan     0.1000    0.0011
##     40        0.8468             nan     0.1000   -0.0001
##     60        0.8429             nan     0.1000   -0.0001
##     80        0.8394             nan     0.1000   -0.0003
##    100        0.8375             nan     0.1000   -0.0004
##    120        0.8355             nan     0.1000   -0.0002
##    140        0.8342             nan     0.1000   -0.0005
##    150        0.8333             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9717             nan     0.1000    0.0092
##      2        0.9542             nan     0.1000    0.0085
##      3        0.9373             nan     0.1000    0.0081
##      4        0.9244             nan     0.1000    0.0053
##      5        0.9135             nan     0.1000    0.0054
##      6        0.9034             nan     0.1000    0.0024
##      7        0.8944             nan     0.1000    0.0042
##      8        0.8862             nan     0.1000    0.0028
##      9        0.8803             nan     0.1000    0.0008
##     10        0.8768             nan     0.1000    0.0008
##     20        0.8530             nan     0.1000    0.0005
##     40        0.8350             nan     0.1000   -0.0012
##     60        0.8302             nan     0.1000   -0.0008
##     80        0.8274             nan     0.1000   -0.0004
##    100        0.8242             nan     0.1000   -0.0011
##    120        0.8227             nan     0.1000   -0.0025
##    140        0.8219             nan     0.1000   -0.0003
##    150        0.8206             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9724             nan     0.1000    0.0105
##      2        0.9568             nan     0.1000    0.0076
##      3        0.9358             nan     0.1000    0.0057
##      4        0.9205             nan     0.1000    0.0066
##      5        0.9109             nan     0.1000    0.0041
##      6        0.8990             nan     0.1000    0.0030
##      7        0.8906             nan     0.1000    0.0024
##      8        0.8860             nan     0.1000    0.0012
##      9        0.8802             nan     0.1000    0.0017
##     10        0.8735             nan     0.1000    0.0025
##     20        0.8469             nan     0.1000   -0.0008
##     40        0.8287             nan     0.1000   -0.0014
##     60        0.8225             nan     0.1000   -0.0012
##     80        0.8207             nan     0.1000   -0.0007
##    100        0.8187             nan     0.1000   -0.0005
##    120        0.8159             nan     0.1000   -0.0011
##    140        0.8153             nan     0.1000   -0.0014
##    150        0.8151             nan     0.1000   -0.0019
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9788             nan     0.1000    0.0104
##      2        0.9631             nan     0.1000    0.0080
##      3        0.9481             nan     0.1000    0.0045
##      4        0.9349             nan     0.1000    0.0062
##      5        0.9235             nan     0.1000    0.0049
##      6        0.9152             nan     0.1000    0.0039
##      7        0.9087             nan     0.1000    0.0033
##      8        0.9027             nan     0.1000    0.0027
##      9        0.8972             nan     0.1000    0.0020
##     10        0.8920             nan     0.1000    0.0011
##     20        0.8636             nan     0.1000    0.0011
##     40        0.8498             nan     0.1000   -0.0004
##     60        0.8437             nan     0.1000   -0.0006
##     80        0.8417             nan     0.1000   -0.0003
##    100        0.8397             nan     0.1000   -0.0005
##    120        0.8380             nan     0.1000   -0.0003
##    140        0.8350             nan     0.1000   -0.0015
##    150        0.8346             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9734             nan     0.1000    0.0114
##      2        0.9552             nan     0.1000    0.0096
##      3        0.9375             nan     0.1000    0.0081
##      4        0.9238             nan     0.1000    0.0046
##      5        0.9113             nan     0.1000    0.0044
##      6        0.9006             nan     0.1000    0.0037
##      7        0.8934             nan     0.1000    0.0020
##      8        0.8869             nan     0.1000    0.0030
##      9        0.8802             nan     0.1000    0.0024
##     10        0.8750             nan     0.1000    0.0014
##     20        0.8550             nan     0.1000   -0.0012
##     40        0.8383             nan     0.1000   -0.0006
##     60        0.8303             nan     0.1000   -0.0003
##     80        0.8267             nan     0.1000   -0.0002
##    100        0.8257             nan     0.1000   -0.0012
##    120        0.8240             nan     0.1000   -0.0012
##    140        0.8231             nan     0.1000   -0.0009
##    150        0.8221             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9710             nan     0.1000    0.0112
##      2        0.9514             nan     0.1000    0.0090
##      3        0.9364             nan     0.1000    0.0058
##      4        0.9220             nan     0.1000    0.0061
##      5        0.9097             nan     0.1000    0.0045
##      6        0.8975             nan     0.1000    0.0040
##      7        0.8895             nan     0.1000    0.0034
##      8        0.8813             nan     0.1000    0.0019
##      9        0.8750             nan     0.1000    0.0017
##     10        0.8689             nan     0.1000    0.0014
##     20        0.8456             nan     0.1000    0.0002
##     40        0.8334             nan     0.1000   -0.0019
##     60        0.8262             nan     0.1000   -0.0006
##     80        0.8229             nan     0.1000   -0.0018
##    100        0.8211             nan     0.1000   -0.0010
##    120        0.8198             nan     0.1000   -0.0010
##    140        0.8189             nan     0.1000   -0.0035
##    150        0.8186             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9796             nan     0.1000    0.0096
##      2        0.9638             nan     0.1000    0.0070
##      3        0.9488             nan     0.1000    0.0068
##      4        0.9371             nan     0.1000    0.0042
##      5        0.9274             nan     0.1000    0.0046
##      6        0.9199             nan     0.1000    0.0036
##      7        0.9129             nan     0.1000    0.0034
##      8        0.9061             nan     0.1000    0.0031
##      9        0.8995             nan     0.1000    0.0018
##     10        0.8958             nan     0.1000    0.0015
##     20        0.8682             nan     0.1000   -0.0001
##     40        0.8551             nan     0.1000   -0.0013
##     60        0.8496             nan     0.1000   -0.0003
##     80        0.8453             nan     0.1000   -0.0001
##    100        0.8444             nan     0.1000   -0.0006
##    120        0.8425             nan     0.1000   -0.0003
##    140        0.8418             nan     0.1000   -0.0009
##    150        0.8409             nan     0.1000   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9726             nan     0.1000    0.0092
##      2        0.9549             nan     0.1000    0.0062
##      3        0.9406             nan     0.1000    0.0073
##      4        0.9275             nan     0.1000    0.0037
##      5        0.9167             nan     0.1000    0.0040
##      6        0.9074             nan     0.1000    0.0043
##      7        0.8995             nan     0.1000    0.0029
##      8        0.8938             nan     0.1000    0.0026
##      9        0.8896             nan     0.1000    0.0018
##     10        0.8837             nan     0.1000    0.0005
##     20        0.8566             nan     0.1000   -0.0006
##     40        0.8410             nan     0.1000   -0.0013
##     60        0.8349             nan     0.1000   -0.0007
##     80        0.8307             nan     0.1000   -0.0006
##    100        0.8283             nan     0.1000   -0.0010
##    120        0.8264             nan     0.1000   -0.0006
##    140        0.8256             nan     0.1000   -0.0006
##    150        0.8255             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9714             nan     0.1000    0.0116
##      2        0.9525             nan     0.1000    0.0095
##      3        0.9362             nan     0.1000    0.0079
##      4        0.9224             nan     0.1000    0.0047
##      5        0.9147             nan     0.1000    0.0023
##      6        0.9038             nan     0.1000    0.0031
##      7        0.8988             nan     0.1000   -0.0001
##      8        0.8930             nan     0.1000    0.0014
##      9        0.8874             nan     0.1000    0.0025
##     10        0.8792             nan     0.1000    0.0027
##     20        0.8513             nan     0.1000   -0.0002
##     40        0.8350             nan     0.1000   -0.0028
##     60        0.8307             nan     0.1000   -0.0014
##     80        0.8281             nan     0.1000   -0.0009
##    100        0.8257             nan     0.1000   -0.0023
##    120        0.8254             nan     0.1000   -0.0007
##    140        0.8233             nan     0.1000   -0.0017
##    150        0.8238             nan     0.1000   -0.0024
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9824             nan     0.1000    0.0062
##      2        0.9596             nan     0.1000    0.0068
##      3        0.9451             nan     0.1000    0.0064
##      4        0.9326             nan     0.1000    0.0048
##      5        0.9210             nan     0.1000    0.0033
##      6        0.9144             nan     0.1000    0.0032
##      7        0.9068             nan     0.1000    0.0026
##      8        0.9014             nan     0.1000    0.0024
##      9        0.8969             nan     0.1000    0.0017
##     10        0.8927             nan     0.1000    0.0017
##     20        0.8677             nan     0.1000    0.0003
##     40        0.8531             nan     0.1000   -0.0013
##     60        0.8505             nan     0.1000   -0.0008
##     80        0.8474             nan     0.1000   -0.0003
##    100        0.8447             nan     0.1000   -0.0002
##    120        0.8436             nan     0.1000   -0.0007
##    140        0.8420             nan     0.1000   -0.0006
##    150        0.8414             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9705             nan     0.1000    0.0094
##      2        0.9521             nan     0.1000    0.0074
##      3        0.9370             nan     0.1000    0.0073
##      4        0.9239             nan     0.1000    0.0051
##      5        0.9133             nan     0.1000    0.0045
##      6        0.9032             nan     0.1000    0.0025
##      7        0.8966             nan     0.1000    0.0019
##      8        0.8883             nan     0.1000    0.0027
##      9        0.8833             nan     0.1000    0.0018
##     10        0.8794             nan     0.1000    0.0013
##     20        0.8580             nan     0.1000   -0.0022
##     40        0.8453             nan     0.1000   -0.0016
##     60        0.8394             nan     0.1000   -0.0004
##     80        0.8385             nan     0.1000   -0.0007
##    100        0.8357             nan     0.1000   -0.0012
##    120        0.8347             nan     0.1000   -0.0016
##    140        0.8348             nan     0.1000   -0.0008
##    150        0.8337             nan     0.1000   -0.0017
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9733             nan     0.1000    0.0104
##      2        0.9499             nan     0.1000    0.0083
##      3        0.9353             nan     0.1000    0.0056
##      4        0.9212             nan     0.1000    0.0066
##      5        0.9111             nan     0.1000    0.0017
##      6        0.8988             nan     0.1000    0.0041
##      7        0.8905             nan     0.1000    0.0030
##      8        0.8853             nan     0.1000    0.0013
##      9        0.8795             nan     0.1000    0.0022
##     10        0.8743             nan     0.1000    0.0015
##     20        0.8517             nan     0.1000   -0.0009
##     40        0.8396             nan     0.1000   -0.0017
##     60        0.8362             nan     0.1000   -0.0006
##     80        0.8319             nan     0.1000   -0.0011
##    100        0.8308             nan     0.1000   -0.0025
##    120        0.8293             nan     0.1000   -0.0011
##    140        0.8280             nan     0.1000   -0.0016
##    150        0.8279             nan     0.1000   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9779             nan     0.1000    0.0062
##      2        0.9593             nan     0.1000    0.0058
##      3        0.9480             nan     0.1000    0.0042
##      4        0.9405             nan     0.1000    0.0024
##      5        0.9302             nan     0.1000    0.0027
##      6        0.9230             nan     0.1000    0.0024
##      7        0.9172             nan     0.1000    0.0030
##      8        0.9126             nan     0.1000    0.0020
##      9        0.9069             nan     0.1000    0.0024
##     10        0.9045             nan     0.1000    0.0003
##     20        0.8796             nan     0.1000    0.0008
##     40        0.8681             nan     0.1000   -0.0008
##     60        0.8634             nan     0.1000   -0.0004
##     80        0.8608             nan     0.1000   -0.0005
##    100        0.8588             nan     0.1000    0.0002
##    120        0.8563             nan     0.1000   -0.0003
##    140        0.8545             nan     0.1000   -0.0004
##    150        0.8547             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0096
##      2        0.9596             nan     0.1000    0.0064
##      3        0.9462             nan     0.1000    0.0067
##      4        0.9355             nan     0.1000    0.0024
##      5        0.9222             nan     0.1000    0.0040
##      6        0.9139             nan     0.1000    0.0032
##      7        0.9073             nan     0.1000    0.0024
##      8        0.9022             nan     0.1000    0.0018
##      9        0.8965             nan     0.1000    0.0029
##     10        0.8933             nan     0.1000    0.0013
##     20        0.8689             nan     0.1000   -0.0001
##     40        0.8577             nan     0.1000   -0.0028
##     60        0.8478             nan     0.1000   -0.0003
##     80        0.8438             nan     0.1000   -0.0010
##    100        0.8418             nan     0.1000   -0.0002
##    120        0.8396             nan     0.1000   -0.0006
##    140        0.8384             nan     0.1000   -0.0014
##    150        0.8379             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9686             nan     0.1000    0.0091
##      2        0.9543             nan     0.1000    0.0019
##      3        0.9387             nan     0.1000    0.0061
##      4        0.9271             nan     0.1000    0.0045
##      5        0.9175             nan     0.1000    0.0045
##      6        0.9084             nan     0.1000    0.0038
##      7        0.9015             nan     0.1000    0.0035
##      8        0.8949             nan     0.1000    0.0003
##      9        0.8878             nan     0.1000    0.0013
##     10        0.8842             nan     0.1000    0.0008
##     20        0.8592             nan     0.1000    0.0003
##     40        0.8434             nan     0.1000   -0.0013
##     60        0.8398             nan     0.1000   -0.0012
##     80        0.8379             nan     0.1000   -0.0009
##    100        0.8356             nan     0.1000   -0.0010
##    120        0.8338             nan     0.1000   -0.0011
##    140        0.8324             nan     0.1000   -0.0015
##    150        0.8318             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9724             nan     0.1000    0.0093
##      2        0.9584             nan     0.1000    0.0070
##      3        0.9445             nan     0.1000    0.0063
##      4        0.9310             nan     0.1000    0.0032
##      5        0.9222             nan     0.1000    0.0023
##      6        0.9155             nan     0.1000    0.0012
##      7        0.9092             nan     0.1000    0.0031
##      8        0.9044             nan     0.1000    0.0005
##      9        0.9009             nan     0.1000    0.0002
##     10        0.8941             nan     0.1000    0.0017
##     20        0.8684             nan     0.1000   -0.0003
##     40        0.8571             nan     0.1000   -0.0010
##     60        0.8513             nan     0.1000   -0.0005
##     80        0.8473             nan     0.1000   -0.0008
##    100        0.8470             nan     0.1000   -0.0007
##    120        0.8440             nan     0.1000   -0.0008
##    140        0.8415             nan     0.1000    0.0001
##    150        0.8410             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9763             nan     0.1000    0.0090
##      2        0.9568             nan     0.1000    0.0094
##      3        0.9422             nan     0.1000    0.0076
##      4        0.9303             nan     0.1000    0.0056
##      5        0.9181             nan     0.1000    0.0037
##      6        0.9073             nan     0.1000    0.0012
##      7        0.8989             nan     0.1000    0.0039
##      8        0.8929             nan     0.1000    0.0022
##      9        0.8893             nan     0.1000    0.0006
##     10        0.8867             nan     0.1000    0.0009
##     20        0.8617             nan     0.1000   -0.0013
##     40        0.8486             nan     0.1000   -0.0010
##     60        0.8393             nan     0.1000   -0.0007
##     80        0.8360             nan     0.1000   -0.0010
##    100        0.8337             nan     0.1000   -0.0009
##    120        0.8310             nan     0.1000   -0.0006
##    140        0.8302             nan     0.1000   -0.0010
##    150        0.8300             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9706             nan     0.1000    0.0110
##      2        0.9490             nan     0.1000    0.0048
##      3        0.9333             nan     0.1000    0.0059
##      4        0.9205             nan     0.1000    0.0061
##      5        0.9087             nan     0.1000    0.0028
##      6        0.8997             nan     0.1000    0.0031
##      7        0.8903             nan     0.1000    0.0025
##      8        0.8858             nan     0.1000   -0.0000
##      9        0.8802             nan     0.1000   -0.0007
##     10        0.8755             nan     0.1000   -0.0002
##     20        0.8505             nan     0.1000    0.0002
##     40        0.8360             nan     0.1000   -0.0012
##     60        0.8331             nan     0.1000   -0.0006
##     80        0.8302             nan     0.1000   -0.0010
##    100        0.8286             nan     0.1000   -0.0008
##    120        0.8271             nan     0.1000   -0.0018
##    140        0.8269             nan     0.1000   -0.0006
##    150        0.8258             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9772             nan     0.1000    0.0068
##      2        0.9610             nan     0.1000    0.0068
##      3        0.9501             nan     0.1000    0.0028
##      4        0.9404             nan     0.1000    0.0047
##      5        0.9292             nan     0.1000    0.0044
##      6        0.9207             nan     0.1000    0.0029
##      7        0.9121             nan     0.1000    0.0035
##      8        0.9062             nan     0.1000    0.0016
##      9        0.9018             nan     0.1000    0.0009
##     10        0.8958             nan     0.1000    0.0024
##     20        0.8653             nan     0.1000    0.0002
##     40        0.8524             nan     0.1000   -0.0002
##     60        0.8479             nan     0.1000   -0.0007
##     80        0.8448             nan     0.1000   -0.0001
##    100        0.8398             nan     0.1000   -0.0005
##    120        0.8374             nan     0.1000   -0.0004
##    140        0.8360             nan     0.1000   -0.0008
##    150        0.8351             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9738             nan     0.1000    0.0102
##      2        0.9514             nan     0.1000    0.0072
##      3        0.9395             nan     0.1000    0.0065
##      4        0.9281             nan     0.1000    0.0056
##      5        0.9149             nan     0.1000    0.0028
##      6        0.9070             nan     0.1000    0.0035
##      7        0.8986             nan     0.1000    0.0034
##      8        0.8931             nan     0.1000    0.0027
##      9        0.8875             nan     0.1000    0.0026
##     10        0.8805             nan     0.1000    0.0026
##     20        0.8585             nan     0.1000   -0.0005
##     40        0.8357             nan     0.1000   -0.0004
##     60        0.8299             nan     0.1000   -0.0013
##     80        0.8257             nan     0.1000   -0.0008
##    100        0.8227             nan     0.1000   -0.0010
##    120        0.8201             nan     0.1000   -0.0016
##    140        0.8189             nan     0.1000   -0.0015
##    150        0.8176             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9681             nan     0.1000    0.0106
##      2        0.9488             nan     0.1000    0.0073
##      3        0.9334             nan     0.1000    0.0057
##      4        0.9191             nan     0.1000    0.0061
##      5        0.9123             nan     0.1000    0.0021
##      6        0.9028             nan     0.1000    0.0046
##      7        0.8930             nan     0.1000    0.0028
##      8        0.8864             nan     0.1000    0.0010
##      9        0.8801             nan     0.1000    0.0008
##     10        0.8750             nan     0.1000    0.0014
##     20        0.8489             nan     0.1000   -0.0009
##     40        0.8293             nan     0.1000   -0.0010
##     60        0.8234             nan     0.1000   -0.0004
##     80        0.8214             nan     0.1000   -0.0009
##    100        0.8180             nan     0.1000   -0.0012
##    120        0.8162             nan     0.1000   -0.0006
##    140        0.8145             nan     0.1000   -0.0021
##    150        0.8152             nan     0.1000   -0.0023
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9766             nan     0.1000    0.0091
##      2        0.9631             nan     0.1000    0.0063
##      3        0.9502             nan     0.1000    0.0064
##      4        0.9406             nan     0.1000    0.0057
##      5        0.9293             nan     0.1000    0.0045
##      6        0.9238             nan     0.1000    0.0021
##      7        0.9157             nan     0.1000    0.0029
##      8        0.9083             nan     0.1000    0.0029
##      9        0.9017             nan     0.1000    0.0035
##     10        0.8967             nan     0.1000    0.0015
##     20        0.8726             nan     0.1000   -0.0006
##     40        0.8515             nan     0.1000   -0.0013
##     60        0.8457             nan     0.1000   -0.0004
##     80        0.8447             nan     0.1000   -0.0005
##    100        0.8424             nan     0.1000   -0.0005
##    120        0.8416             nan     0.1000   -0.0003
##    140        0.8393             nan     0.1000   -0.0002
##    150        0.8386             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9706             nan     0.1000    0.0106
##      2        0.9533             nan     0.1000    0.0077
##      3        0.9369             nan     0.1000    0.0053
##      4        0.9239             nan     0.1000    0.0067
##      5        0.9151             nan     0.1000    0.0004
##      6        0.9090             nan     0.1000    0.0018
##      7        0.8996             nan     0.1000    0.0036
##      8        0.8936             nan     0.1000    0.0027
##      9        0.8870             nan     0.1000    0.0020
##     10        0.8837             nan     0.1000    0.0009
##     20        0.8579             nan     0.1000   -0.0013
##     40        0.8426             nan     0.1000   -0.0004
##     60        0.8378             nan     0.1000   -0.0012
##     80        0.8341             nan     0.1000   -0.0010
##    100        0.8322             nan     0.1000   -0.0009
##    120        0.8304             nan     0.1000   -0.0012
##    140        0.8272             nan     0.1000   -0.0014
##    150        0.8274             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9695             nan     0.1000    0.0119
##      2        0.9520             nan     0.1000    0.0079
##      3        0.9365             nan     0.1000    0.0063
##      4        0.9217             nan     0.1000    0.0063
##      5        0.9087             nan     0.1000    0.0053
##      6        0.8987             nan     0.1000    0.0040
##      7        0.8912             nan     0.1000    0.0026
##      8        0.8861             nan     0.1000    0.0011
##      9        0.8800             nan     0.1000    0.0015
##     10        0.8752             nan     0.1000    0.0019
##     20        0.8502             nan     0.1000   -0.0010
##     40        0.8368             nan     0.1000   -0.0009
##     60        0.8314             nan     0.1000   -0.0006
##     80        0.8281             nan     0.1000   -0.0007
##    100        0.8251             nan     0.1000   -0.0019
##    120        0.8248             nan     0.1000   -0.0013
##    140        0.8227             nan     0.1000   -0.0010
##    150        0.8232             nan     0.1000   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9750             nan     0.1000    0.0076
##      2        0.9643             nan     0.1000    0.0013
##      3        0.9558             nan     0.1000    0.0019
##      4        0.9429             nan     0.1000    0.0064
##      5        0.9347             nan     0.1000    0.0031
##      6        0.9254             nan     0.1000    0.0040
##      7        0.9179             nan     0.1000    0.0032
##      8        0.9106             nan     0.1000    0.0034
##      9        0.9024             nan     0.1000    0.0028
##     10        0.8972             nan     0.1000    0.0009
##     20        0.8671             nan     0.1000    0.0000
##     40        0.8553             nan     0.1000   -0.0004
##     60        0.8520             nan     0.1000   -0.0009
##     80        0.8495             nan     0.1000   -0.0010
##    100        0.8476             nan     0.1000   -0.0001
##    120        0.8449             nan     0.1000   -0.0003
##    140        0.8420             nan     0.1000   -0.0000
##    150        0.8417             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9696             nan     0.1000    0.0084
##      2        0.9512             nan     0.1000    0.0067
##      3        0.9370             nan     0.1000    0.0040
##      4        0.9271             nan     0.1000    0.0050
##      5        0.9167             nan     0.1000    0.0053
##      6        0.9094             nan     0.1000    0.0033
##      7        0.9014             nan     0.1000    0.0016
##      8        0.8952             nan     0.1000    0.0025
##      9        0.8882             nan     0.1000    0.0015
##     10        0.8832             nan     0.1000    0.0013
##     20        0.8590             nan     0.1000    0.0008
##     40        0.8430             nan     0.1000   -0.0011
##     60        0.8372             nan     0.1000   -0.0009
##     80        0.8310             nan     0.1000   -0.0007
##    100        0.8275             nan     0.1000   -0.0017
##    120        0.8258             nan     0.1000   -0.0012
##    140        0.8239             nan     0.1000   -0.0005
##    150        0.8243             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9682             nan     0.1000    0.0108
##      2        0.9526             nan     0.1000    0.0056
##      3        0.9359             nan     0.1000    0.0073
##      4        0.9263             nan     0.1000    0.0041
##      5        0.9137             nan     0.1000    0.0046
##      6        0.9047             nan     0.1000    0.0036
##      7        0.8936             nan     0.1000    0.0034
##      8        0.8882             nan     0.1000    0.0025
##      9        0.8825             nan     0.1000    0.0014
##     10        0.8777             nan     0.1000    0.0013
##     20        0.8540             nan     0.1000   -0.0006
##     40        0.8332             nan     0.1000   -0.0007
##     60        0.8279             nan     0.1000   -0.0013
##     80        0.8240             nan     0.1000   -0.0001
##    100        0.8215             nan     0.1000   -0.0008
##    120        0.8203             nan     0.1000   -0.0011
##    140        0.8195             nan     0.1000   -0.0009
##    150        0.8183             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9791             nan     0.1000    0.0096
##      2        0.9659             nan     0.1000    0.0072
##      3        0.9552             nan     0.1000    0.0042
##      4        0.9412             nan     0.1000    0.0048
##      5        0.9300             nan     0.1000    0.0031
##      6        0.9200             nan     0.1000    0.0024
##      7        0.9153             nan     0.1000    0.0003
##      8        0.9090             nan     0.1000    0.0028
##      9        0.9016             nan     0.1000    0.0006
##     10        0.8959             nan     0.1000    0.0029
##     20        0.8663             nan     0.1000   -0.0008
##     40        0.8538             nan     0.1000   -0.0008
##     60        0.8496             nan     0.1000   -0.0004
##     80        0.8482             nan     0.1000   -0.0006
##    100        0.8470             nan     0.1000   -0.0008
##    120        0.8438             nan     0.1000   -0.0002
##    140        0.8419             nan     0.1000   -0.0003
##    150        0.8416             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9780             nan     0.1000    0.0088
##      2        0.9598             nan     0.1000    0.0088
##      3        0.9444             nan     0.1000    0.0066
##      4        0.9320             nan     0.1000    0.0063
##      5        0.9198             nan     0.1000    0.0057
##      6        0.9076             nan     0.1000    0.0030
##      7        0.8999             nan     0.1000    0.0028
##      8        0.8920             nan     0.1000    0.0027
##      9        0.8874             nan     0.1000    0.0024
##     10        0.8817             nan     0.1000    0.0023
##     20        0.8576             nan     0.1000   -0.0007
##     40        0.8469             nan     0.1000   -0.0005
##     60        0.8384             nan     0.1000   -0.0004
##     80        0.8330             nan     0.1000   -0.0012
##    100        0.8296             nan     0.1000   -0.0007
##    120        0.8292             nan     0.1000   -0.0006
##    140        0.8278             nan     0.1000   -0.0020
##    150        0.8270             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9715             nan     0.1000    0.0124
##      2        0.9552             nan     0.1000    0.0087
##      3        0.9425             nan     0.1000    0.0048
##      4        0.9279             nan     0.1000    0.0059
##      5        0.9163             nan     0.1000    0.0045
##      6        0.9060             nan     0.1000    0.0038
##      7        0.8956             nan     0.1000    0.0035
##      8        0.8897             nan     0.1000    0.0014
##      9        0.8838             nan     0.1000    0.0018
##     10        0.8781             nan     0.1000    0.0007
##     20        0.8494             nan     0.1000   -0.0009
##     40        0.8332             nan     0.1000   -0.0013
##     60        0.8300             nan     0.1000   -0.0007
##     80        0.8293             nan     0.1000   -0.0009
##    100        0.8255             nan     0.1000   -0.0007
##    120        0.8236             nan     0.1000   -0.0014
##    140        0.8231             nan     0.1000   -0.0008
##    150        0.8228             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9770             nan     0.1000    0.0088
##      2        0.9649             nan     0.1000    0.0063
##      3        0.9508             nan     0.1000    0.0071
##      4        0.9416             nan     0.1000    0.0043
##      5        0.9321             nan     0.1000    0.0051
##      6        0.9214             nan     0.1000    0.0033
##      7        0.9133             nan     0.1000    0.0034
##      8        0.9061             nan     0.1000    0.0034
##      9        0.9001             nan     0.1000   -0.0003
##     10        0.8962             nan     0.1000    0.0018
##     20        0.8707             nan     0.1000   -0.0003
##     40        0.8521             nan     0.1000    0.0001
##     60        0.8460             nan     0.1000   -0.0018
##     80        0.8445             nan     0.1000   -0.0019
##    100        0.8418             nan     0.1000   -0.0004
##    120        0.8403             nan     0.1000   -0.0004
##    140        0.8381             nan     0.1000   -0.0003
##    150        0.8378             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9751             nan     0.1000    0.0115
##      2        0.9556             nan     0.1000    0.0092
##      3        0.9380             nan     0.1000    0.0068
##      4        0.9257             nan     0.1000    0.0055
##      5        0.9152             nan     0.1000    0.0044
##      6        0.9057             nan     0.1000    0.0047
##      7        0.8974             nan     0.1000    0.0029
##      8        0.8910             nan     0.1000    0.0015
##      9        0.8862             nan     0.1000    0.0018
##     10        0.8827             nan     0.1000    0.0013
##     20        0.8520             nan     0.1000   -0.0002
##     40        0.8364             nan     0.1000   -0.0007
##     60        0.8297             nan     0.1000   -0.0008
##     80        0.8249             nan     0.1000   -0.0010
##    100        0.8223             nan     0.1000   -0.0014
##    120        0.8200             nan     0.1000   -0.0006
##    140        0.8189             nan     0.1000   -0.0011
##    150        0.8180             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9689             nan     0.1000    0.0095
##      2        0.9477             nan     0.1000    0.0095
##      3        0.9314             nan     0.1000    0.0044
##      4        0.9172             nan     0.1000    0.0066
##      5        0.9066             nan     0.1000    0.0041
##      6        0.8976             nan     0.1000    0.0038
##      7        0.8901             nan     0.1000    0.0032
##      8        0.8833             nan     0.1000    0.0023
##      9        0.8780             nan     0.1000    0.0010
##     10        0.8738             nan     0.1000    0.0006
##     20        0.8463             nan     0.1000   -0.0007
##     40        0.8279             nan     0.1000   -0.0010
##     60        0.8239             nan     0.1000   -0.0025
##     80        0.8193             nan     0.1000   -0.0011
##    100        0.8177             nan     0.1000   -0.0011
##    120        0.8168             nan     0.1000   -0.0013
##    140        0.8153             nan     0.1000   -0.0006
##    150        0.8146             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9788             nan     0.1000    0.0089
##      2        0.9618             nan     0.1000    0.0084
##      3        0.9482             nan     0.1000    0.0069
##      4        0.9382             nan     0.1000    0.0054
##      5        0.9239             nan     0.1000    0.0031
##      6        0.9176             nan     0.1000    0.0020
##      7        0.9088             nan     0.1000    0.0034
##      8        0.9019             nan     0.1000    0.0027
##      9        0.8955             nan     0.1000    0.0026
##     10        0.8929             nan     0.1000    0.0007
##     20        0.8621             nan     0.1000    0.0003
##     40        0.8485             nan     0.1000   -0.0006
##     60        0.8460             nan     0.1000   -0.0006
##     80        0.8416             nan     0.1000   -0.0004
##    100        0.8397             nan     0.1000   -0.0005
##    120        0.8368             nan     0.1000   -0.0005
##    140        0.8355             nan     0.1000   -0.0003
##    150        0.8348             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9679             nan     0.1000    0.0100
##      2        0.9485             nan     0.1000    0.0082
##      3        0.9319             nan     0.1000    0.0068
##      4        0.9206             nan     0.1000    0.0051
##      5        0.9080             nan     0.1000    0.0051
##      6        0.8986             nan     0.1000    0.0039
##      7        0.8905             nan     0.1000    0.0015
##      8        0.8838             nan     0.1000    0.0035
##      9        0.8780             nan     0.1000    0.0023
##     10        0.8734             nan     0.1000    0.0017
##     20        0.8511             nan     0.1000   -0.0001
##     40        0.8404             nan     0.1000   -0.0007
##     60        0.8341             nan     0.1000   -0.0005
##     80        0.8300             nan     0.1000   -0.0011
##    100        0.8272             nan     0.1000   -0.0004
##    120        0.8254             nan     0.1000   -0.0013
##    140        0.8230             nan     0.1000   -0.0007
##    150        0.8228             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9628             nan     0.1000    0.0105
##      2        0.9427             nan     0.1000    0.0089
##      3        0.9338             nan     0.1000    0.0044
##      4        0.9196             nan     0.1000    0.0048
##      5        0.9062             nan     0.1000    0.0045
##      6        0.8967             nan     0.1000    0.0036
##      7        0.8898             nan     0.1000    0.0018
##      8        0.8845             nan     0.1000    0.0006
##      9        0.8785             nan     0.1000    0.0011
##     10        0.8731             nan     0.1000    0.0015
##     20        0.8477             nan     0.1000   -0.0007
##     40        0.8354             nan     0.1000   -0.0009
##     60        0.8289             nan     0.1000   -0.0004
##     80        0.8240             nan     0.1000   -0.0007
##    100        0.8218             nan     0.1000   -0.0006
##    120        0.8209             nan     0.1000   -0.0008
##    140        0.8195             nan     0.1000   -0.0034
##    150        0.8183             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9758             nan     0.1000    0.0093
##      2        0.9565             nan     0.1000    0.0080
##      3        0.9484             nan     0.1000    0.0025
##      4        0.9367             nan     0.1000    0.0051
##      5        0.9242             nan     0.1000    0.0044
##      6        0.9146             nan     0.1000    0.0038
##      7        0.9074             nan     0.1000    0.0030
##      8        0.9012             nan     0.1000    0.0028
##      9        0.8959             nan     0.1000    0.0027
##     10        0.8916             nan     0.1000    0.0021
##     20        0.8618             nan     0.1000    0.0012
##     40        0.8488             nan     0.1000   -0.0003
##     60        0.8431             nan     0.1000   -0.0003
##     80        0.8407             nan     0.1000   -0.0007
##    100        0.8385             nan     0.1000   -0.0001
##    120        0.8366             nan     0.1000   -0.0015
##    140        0.8342             nan     0.1000   -0.0005
##    150        0.8335             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9760             nan     0.1000    0.0108
##      2        0.9566             nan     0.1000    0.0101
##      3        0.9411             nan     0.1000    0.0077
##      4        0.9261             nan     0.1000    0.0058
##      5        0.9143             nan     0.1000    0.0053
##      6        0.9036             nan     0.1000    0.0040
##      7        0.8958             nan     0.1000    0.0030
##      8        0.8901             nan     0.1000    0.0031
##      9        0.8826             nan     0.1000    0.0012
##     10        0.8798             nan     0.1000    0.0002
##     20        0.8519             nan     0.1000    0.0006
##     40        0.8373             nan     0.1000   -0.0008
##     60        0.8324             nan     0.1000   -0.0010
##     80        0.8272             nan     0.1000   -0.0005
##    100        0.8229             nan     0.1000   -0.0015
##    120        0.8218             nan     0.1000   -0.0009
##    140        0.8214             nan     0.1000   -0.0008
##    150        0.8204             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9665             nan     0.1000    0.0125
##      2        0.9446             nan     0.1000    0.0095
##      3        0.9287             nan     0.1000    0.0045
##      4        0.9140             nan     0.1000    0.0058
##      5        0.9017             nan     0.1000    0.0056
##      6        0.8930             nan     0.1000    0.0037
##      7        0.8859             nan     0.1000    0.0019
##      8        0.8803             nan     0.1000    0.0018
##      9        0.8746             nan     0.1000    0.0011
##     10        0.8707             nan     0.1000   -0.0003
##     20        0.8443             nan     0.1000   -0.0008
##     40        0.8293             nan     0.1000   -0.0012
##     60        0.8222             nan     0.1000   -0.0012
##     80        0.8197             nan     0.1000   -0.0011
##    100        0.8177             nan     0.1000   -0.0011
##    120        0.8169             nan     0.1000   -0.0007
##    140        0.8154             nan     0.1000   -0.0007
##    150        0.8146             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9803             nan     0.1000    0.0093
##      2        0.9660             nan     0.1000    0.0081
##      3        0.9501             nan     0.1000    0.0058
##      4        0.9363             nan     0.1000    0.0048
##      5        0.9290             nan     0.1000    0.0033
##      6        0.9230             nan     0.1000    0.0011
##      7        0.9130             nan     0.1000    0.0043
##      8        0.9055             nan     0.1000    0.0034
##      9        0.9009             nan     0.1000    0.0009
##     10        0.8979             nan     0.1000    0.0000
##     20        0.8680             nan     0.1000   -0.0002
##     40        0.8529             nan     0.1000   -0.0006
##     60        0.8502             nan     0.1000   -0.0008
##     80        0.8470             nan     0.1000   -0.0001
##    100        0.8449             nan     0.1000   -0.0006
##    120        0.8435             nan     0.1000   -0.0008
##    140        0.8425             nan     0.1000   -0.0002
##    150        0.8418             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9750             nan     0.1000    0.0128
##      2        0.9561             nan     0.1000    0.0089
##      3        0.9416             nan     0.1000    0.0067
##      4        0.9280             nan     0.1000    0.0056
##      5        0.9163             nan     0.1000    0.0056
##      6        0.9048             nan     0.1000    0.0026
##      7        0.8970             nan     0.1000    0.0017
##      8        0.8905             nan     0.1000    0.0026
##      9        0.8845             nan     0.1000    0.0024
##     10        0.8798             nan     0.1000    0.0017
##     20        0.8574             nan     0.1000   -0.0012
##     40        0.8426             nan     0.1000   -0.0006
##     60        0.8391             nan     0.1000   -0.0014
##     80        0.8344             nan     0.1000   -0.0011
##    100        0.8334             nan     0.1000   -0.0008
##    120        0.8315             nan     0.1000   -0.0005
##    140        0.8312             nan     0.1000   -0.0013
##    150        0.8303             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9742             nan     0.1000    0.0092
##      2        0.9553             nan     0.1000    0.0092
##      3        0.9365             nan     0.1000    0.0075
##      4        0.9237             nan     0.1000    0.0054
##      5        0.9111             nan     0.1000    0.0039
##      6        0.8979             nan     0.1000    0.0028
##      7        0.8901             nan     0.1000    0.0032
##      8        0.8829             nan     0.1000    0.0028
##      9        0.8754             nan     0.1000    0.0019
##     10        0.8702             nan     0.1000    0.0001
##     20        0.8477             nan     0.1000   -0.0012
##     40        0.8399             nan     0.1000   -0.0008
##     60        0.8369             nan     0.1000   -0.0009
##     80        0.8323             nan     0.1000   -0.0020
##    100        0.8306             nan     0.1000   -0.0014
##    120        0.8302             nan     0.1000   -0.0015
##    140        0.8288             nan     0.1000   -0.0007
##    150        0.8292             nan     0.1000   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9714             nan     0.1000    0.0114
##      2        0.9577             nan     0.1000    0.0074
##      3        0.9441             nan     0.1000    0.0069
##      4        0.9315             nan     0.1000    0.0054
##      5        0.9215             nan     0.1000    0.0042
##      6        0.9120             nan     0.1000    0.0043
##      7        0.9034             nan     0.1000    0.0022
##      8        0.8969             nan     0.1000    0.0027
##      9        0.8884             nan     0.1000    0.0018
##     10        0.8839             nan     0.1000    0.0014
##     20        0.8573             nan     0.1000   -0.0004
##     40        0.8441             nan     0.1000   -0.0010
##     60        0.8389             nan     0.1000   -0.0007
##     80        0.8351             nan     0.1000   -0.0003
##    100        0.8332             nan     0.1000   -0.0004
##    120        0.8309             nan     0.1000   -0.0016
##    140        0.8300             nan     0.1000   -0.0001
##    150        0.8291             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9712             nan     0.1000    0.0100
##      2        0.9519             nan     0.1000    0.0094
##      3        0.9405             nan     0.1000    0.0042
##      4        0.9253             nan     0.1000    0.0052
##      5        0.9125             nan     0.1000    0.0057
##      6        0.9000             nan     0.1000    0.0040
##      7        0.8919             nan     0.1000    0.0035
##      8        0.8848             nan     0.1000    0.0029
##      9        0.8794             nan     0.1000    0.0022
##     10        0.8737             nan     0.1000    0.0016
##     20        0.8477             nan     0.1000   -0.0007
##     40        0.8373             nan     0.1000   -0.0015
##     60        0.8281             nan     0.1000   -0.0001
##     80        0.8252             nan     0.1000   -0.0016
##    100        0.8239             nan     0.1000   -0.0017
##    120        0.8226             nan     0.1000   -0.0003
##    140        0.8218             nan     0.1000   -0.0015
##    150        0.8207             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9645             nan     0.1000    0.0119
##      2        0.9448             nan     0.1000    0.0100
##      3        0.9308             nan     0.1000    0.0068
##      4        0.9183             nan     0.1000    0.0060
##      5        0.9042             nan     0.1000    0.0052
##      6        0.8929             nan     0.1000    0.0043
##      7        0.8825             nan     0.1000    0.0030
##      8        0.8769             nan     0.1000    0.0006
##      9        0.8708             nan     0.1000    0.0018
##     10        0.8644             nan     0.1000    0.0019
##     20        0.8407             nan     0.1000   -0.0008
##     40        0.8283             nan     0.1000   -0.0008
##     60        0.8222             nan     0.1000   -0.0041
##     80        0.8199             nan     0.1000   -0.0007
##    100        0.8180             nan     0.1000   -0.0016
##    120        0.8172             nan     0.1000   -0.0015
##    140        0.8152             nan     0.1000   -0.0015
##    150        0.8140             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9790             nan     0.1000    0.0080
##      2        0.9628             nan     0.1000    0.0069
##      3        0.9518             nan     0.1000    0.0048
##      4        0.9412             nan     0.1000    0.0030
##      5        0.9339             nan     0.1000    0.0038
##      6        0.9270             nan     0.1000    0.0018
##      7        0.9197             nan     0.1000    0.0024
##      8        0.9157             nan     0.1000    0.0016
##      9        0.9092             nan     0.1000    0.0009
##     10        0.9038             nan     0.1000    0.0027
##     20        0.8798             nan     0.1000    0.0002
##     40        0.8656             nan     0.1000    0.0004
##     60        0.8609             nan     0.1000   -0.0008
##     80        0.8596             nan     0.1000   -0.0006
##    100        0.8572             nan     0.1000   -0.0005
##    120        0.8551             nan     0.1000   -0.0007
##    140        0.8540             nan     0.1000   -0.0001
##    150        0.8529             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9720             nan     0.1000    0.0097
##      2        0.9565             nan     0.1000    0.0061
##      3        0.9413             nan     0.1000    0.0051
##      4        0.9316             nan     0.1000    0.0039
##      5        0.9229             nan     0.1000    0.0021
##      6        0.9159             nan     0.1000    0.0030
##      7        0.9087             nan     0.1000    0.0033
##      8        0.9006             nan     0.1000    0.0020
##      9        0.8948             nan     0.1000    0.0016
##     10        0.8915             nan     0.1000    0.0011
##     20        0.8694             nan     0.1000   -0.0005
##     40        0.8548             nan     0.1000   -0.0014
##     60        0.8506             nan     0.1000   -0.0013
##     80        0.8478             nan     0.1000   -0.0013
##    100        0.8455             nan     0.1000   -0.0005
##    120        0.8435             nan     0.1000   -0.0007
##    140        0.8431             nan     0.1000   -0.0017
##    150        0.8422             nan     0.1000   -0.0011
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9736             nan     0.1000    0.0111
##      2        0.9558             nan     0.1000    0.0065
##      3        0.9420             nan     0.1000    0.0069
##      4        0.9297             nan     0.1000    0.0055
##      5        0.9210             nan     0.1000    0.0042
##      6        0.9127             nan     0.1000    0.0030
##      7        0.9053             nan     0.1000    0.0033
##      8        0.8984             nan     0.1000    0.0030
##      9        0.8926             nan     0.1000    0.0010
##     10        0.8872             nan     0.1000   -0.0001
##     20        0.8611             nan     0.1000   -0.0016
##     40        0.8485             nan     0.1000   -0.0004
##     60        0.8450             nan     0.1000   -0.0002
##     80        0.8427             nan     0.1000   -0.0011
##    100        0.8406             nan     0.1000   -0.0014
##    120        0.8404             nan     0.1000   -0.0014
##    140        0.8404             nan     0.1000   -0.0025
##    150        0.8391             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9802             nan     0.1000    0.0074
##      2        0.9704             nan     0.1000    0.0042
##      3        0.9577             nan     0.1000    0.0063
##      4        0.9445             nan     0.1000    0.0046
##      5        0.9343             nan     0.1000    0.0026
##      6        0.9255             nan     0.1000    0.0032
##      7        0.9190             nan     0.1000    0.0022
##      8        0.9137             nan     0.1000    0.0009
##      9        0.9090             nan     0.1000    0.0017
##     10        0.9027             nan     0.1000    0.0028
##     20        0.8726             nan     0.1000    0.0000
##     40        0.8632             nan     0.1000   -0.0003
##     60        0.8564             nan     0.1000    0.0003
##     80        0.8551             nan     0.1000   -0.0011
##    100        0.8525             nan     0.1000   -0.0006
##    120        0.8511             nan     0.1000   -0.0002
##    140        0.8479             nan     0.1000   -0.0004
##    150        0.8472             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9734             nan     0.1000    0.0081
##      2        0.9544             nan     0.1000    0.0060
##      3        0.9404             nan     0.1000    0.0069
##      4        0.9294             nan     0.1000    0.0050
##      5        0.9211             nan     0.1000    0.0041
##      6        0.9111             nan     0.1000    0.0033
##      7        0.9021             nan     0.1000    0.0038
##      8        0.8959             nan     0.1000    0.0026
##      9        0.8906             nan     0.1000    0.0015
##     10        0.8840             nan     0.1000    0.0007
##     20        0.8642             nan     0.1000   -0.0001
##     40        0.8498             nan     0.1000   -0.0007
##     60        0.8440             nan     0.1000   -0.0007
##     80        0.8398             nan     0.1000   -0.0022
##    100        0.8376             nan     0.1000   -0.0010
##    120        0.8367             nan     0.1000   -0.0016
##    140        0.8357             nan     0.1000   -0.0026
##    150        0.8354             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9715             nan     0.1000    0.0085
##      2        0.9533             nan     0.1000    0.0078
##      3        0.9407             nan     0.1000    0.0050
##      4        0.9278             nan     0.1000    0.0052
##      5        0.9178             nan     0.1000    0.0043
##      6        0.9082             nan     0.1000    0.0043
##      7        0.8998             nan     0.1000    0.0040
##      8        0.8933             nan     0.1000    0.0025
##      9        0.8873             nan     0.1000    0.0022
##     10        0.8831             nan     0.1000    0.0010
##     20        0.8570             nan     0.1000   -0.0012
##     40        0.8442             nan     0.1000   -0.0015
##     60        0.8356             nan     0.1000   -0.0010
##     80        0.8335             nan     0.1000   -0.0008
##    100        0.8328             nan     0.1000   -0.0013
##    120        0.8319             nan     0.1000   -0.0017
##    140        0.8320             nan     0.1000   -0.0013
##    150        0.8315             nan     0.1000   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9776             nan     0.1000    0.0074
##      2        0.9618             nan     0.1000    0.0075
##      3        0.9495             nan     0.1000    0.0046
##      4        0.9394             nan     0.1000    0.0050
##      5        0.9293             nan     0.1000    0.0042
##      6        0.9219             nan     0.1000    0.0035
##      7        0.9158             nan     0.1000    0.0014
##      8        0.9095             nan     0.1000    0.0030
##      9        0.9031             nan     0.1000    0.0027
##     10        0.8987             nan     0.1000    0.0017
##     20        0.8744             nan     0.1000    0.0005
##     40        0.8540             nan     0.1000    0.0000
##     60        0.8488             nan     0.1000   -0.0002
##     80        0.8448             nan     0.1000   -0.0004
##    100        0.8427             nan     0.1000   -0.0006
##    120        0.8413             nan     0.1000   -0.0003
##    140        0.8391             nan     0.1000   -0.0009
##    150        0.8385             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9722             nan     0.1000    0.0101
##      2        0.9537             nan     0.1000    0.0073
##      3        0.9398             nan     0.1000    0.0060
##      4        0.9264             nan     0.1000    0.0060
##      5        0.9169             nan     0.1000    0.0042
##      6        0.9094             nan     0.1000    0.0037
##      7        0.9016             nan     0.1000    0.0029
##      8        0.8942             nan     0.1000    0.0030
##      9        0.8890             nan     0.1000    0.0010
##     10        0.8834             nan     0.1000    0.0014
##     20        0.8597             nan     0.1000   -0.0002
##     40        0.8403             nan     0.1000   -0.0015
##     60        0.8338             nan     0.1000   -0.0007
##     80        0.8284             nan     0.1000   -0.0011
##    100        0.8260             nan     0.1000   -0.0001
##    120        0.8243             nan     0.1000   -0.0007
##    140        0.8221             nan     0.1000   -0.0014
##    150        0.8221             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9722             nan     0.1000    0.0115
##      2        0.9511             nan     0.1000    0.0073
##      3        0.9348             nan     0.1000    0.0073
##      4        0.9249             nan     0.1000    0.0042
##      5        0.9129             nan     0.1000    0.0035
##      6        0.9035             nan     0.1000    0.0030
##      7        0.8958             nan     0.1000    0.0010
##      8        0.8881             nan     0.1000    0.0028
##      9        0.8833             nan     0.1000    0.0012
##     10        0.8783             nan     0.1000    0.0013
##     20        0.8507             nan     0.1000   -0.0010
##     40        0.8332             nan     0.1000   -0.0002
##     60        0.8275             nan     0.1000   -0.0016
##     80        0.8229             nan     0.1000   -0.0017
##    100        0.8198             nan     0.1000   -0.0009
##    120        0.8177             nan     0.1000   -0.0011
##    140        0.8165             nan     0.1000   -0.0019
##    150        0.8159             nan     0.1000   -0.0026
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9754             nan     0.1000    0.0058
##      2        0.9621             nan     0.1000    0.0062
##      3        0.9515             nan     0.1000    0.0052
##      4        0.9403             nan     0.1000    0.0054
##      5        0.9309             nan     0.1000    0.0033
##      6        0.9244             nan     0.1000    0.0035
##      7        0.9166             nan     0.1000    0.0026
##      8        0.9114             nan     0.1000    0.0018
##      9        0.9054             nan     0.1000    0.0022
##     10        0.9012             nan     0.1000    0.0013
##     20        0.8761             nan     0.1000    0.0001
##     40        0.8601             nan     0.1000   -0.0007
##     60        0.8573             nan     0.1000   -0.0004
##     80        0.8562             nan     0.1000   -0.0003
##    100        0.8533             nan     0.1000   -0.0001
##    120        0.8510             nan     0.1000   -0.0003
##    140        0.8483             nan     0.1000   -0.0004
##    150        0.8471             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9725             nan     0.1000    0.0093
##      2        0.9555             nan     0.1000    0.0087
##      3        0.9422             nan     0.1000    0.0072
##      4        0.9286             nan     0.1000    0.0045
##      5        0.9191             nan     0.1000    0.0047
##      6        0.9125             nan     0.1000    0.0031
##      7        0.9035             nan     0.1000    0.0025
##      8        0.8983             nan     0.1000    0.0008
##      9        0.8915             nan     0.1000    0.0022
##     10        0.8868             nan     0.1000    0.0001
##     20        0.8590             nan     0.1000   -0.0009
##     40        0.8449             nan     0.1000   -0.0017
##     60        0.8410             nan     0.1000   -0.0007
##     80        0.8384             nan     0.1000   -0.0008
##    100        0.8361             nan     0.1000   -0.0006
##    120        0.8342             nan     0.1000   -0.0002
##    140        0.8318             nan     0.1000   -0.0013
##    150        0.8311             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9695             nan     0.1000    0.0069
##      2        0.9483             nan     0.1000    0.0091
##      3        0.9338             nan     0.1000    0.0061
##      4        0.9194             nan     0.1000    0.0059
##      5        0.9086             nan     0.1000    0.0042
##      6        0.9014             nan     0.1000    0.0016
##      7        0.8935             nan     0.1000    0.0031
##      8        0.8879             nan     0.1000    0.0022
##      9        0.8835             nan     0.1000    0.0004
##     10        0.8779             nan     0.1000    0.0014
##     20        0.8572             nan     0.1000   -0.0001
##     40        0.8408             nan     0.1000   -0.0013
##     60        0.8341             nan     0.1000   -0.0011
##     80        0.8325             nan     0.1000   -0.0005
##    100        0.8304             nan     0.1000   -0.0018
##    120        0.8298             nan     0.1000   -0.0019
##    140        0.8285             nan     0.1000   -0.0006
##    150        0.8282             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9812             nan     0.1000    0.0089
##      2        0.9657             nan     0.1000    0.0064
##      3        0.9521             nan     0.1000    0.0070
##      4        0.9405             nan     0.1000    0.0030
##      5        0.9308             nan     0.1000    0.0046
##      6        0.9254             nan     0.1000    0.0018
##      7        0.9171             nan     0.1000    0.0026
##      8        0.9111             nan     0.1000    0.0026
##      9        0.9069             nan     0.1000    0.0007
##     10        0.9036             nan     0.1000    0.0009
##     20        0.8676             nan     0.1000   -0.0008
##     40        0.8547             nan     0.1000    0.0001
##     60        0.8505             nan     0.1000   -0.0004
##     80        0.8486             nan     0.1000   -0.0008
##    100        0.8474             nan     0.1000   -0.0004
##    120        0.8442             nan     0.1000   -0.0002
##    140        0.8423             nan     0.1000   -0.0002
##    150        0.8412             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9732             nan     0.1000    0.0106
##      2        0.9540             nan     0.1000    0.0085
##      3        0.9389             nan     0.1000    0.0069
##      4        0.9252             nan     0.1000    0.0060
##      5        0.9137             nan     0.1000    0.0048
##      6        0.9050             nan     0.1000    0.0041
##      7        0.8997             nan     0.1000    0.0012
##      8        0.8922             nan     0.1000    0.0028
##      9        0.8849             nan     0.1000    0.0025
##     10        0.8808             nan     0.1000    0.0012
##     20        0.8566             nan     0.1000   -0.0006
##     40        0.8444             nan     0.1000   -0.0007
##     60        0.8384             nan     0.1000   -0.0002
##     80        0.8358             nan     0.1000   -0.0013
##    100        0.8335             nan     0.1000   -0.0014
##    120        0.8328             nan     0.1000   -0.0007
##    140        0.8314             nan     0.1000   -0.0016
##    150        0.8301             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9779             nan     0.1000    0.0074
##      2        0.9581             nan     0.1000    0.0103
##      3        0.9400             nan     0.1000    0.0089
##      4        0.9255             nan     0.1000    0.0062
##      5        0.9136             nan     0.1000    0.0048
##      6        0.9037             nan     0.1000    0.0038
##      7        0.8937             nan     0.1000    0.0036
##      8        0.8852             nan     0.1000    0.0030
##      9        0.8784             nan     0.1000    0.0007
##     10        0.8724             nan     0.1000    0.0005
##     20        0.8517             nan     0.1000    0.0001
##     40        0.8392             nan     0.1000   -0.0014
##     60        0.8353             nan     0.1000   -0.0007
##     80        0.8323             nan     0.1000   -0.0028
##    100        0.8295             nan     0.1000   -0.0012
##    120        0.8295             nan     0.1000   -0.0009
##    140        0.8278             nan     0.1000   -0.0009
##    150        0.8272             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9742             nan     0.1000    0.0093
##      2        0.9564             nan     0.1000    0.0062
##      3        0.9418             nan     0.1000    0.0059
##      4        0.9304             nan     0.1000    0.0043
##      5        0.9217             nan     0.1000    0.0001
##      6        0.9151             nan     0.1000    0.0023
##      7        0.9065             nan     0.1000    0.0030
##      8        0.9005             nan     0.1000    0.0025
##      9        0.8974             nan     0.1000   -0.0004
##     10        0.8924             nan     0.1000    0.0023
##     20        0.8670             nan     0.1000    0.0003
##     40        0.8558             nan     0.1000   -0.0002
##     60        0.8514             nan     0.1000   -0.0004
##     80        0.8487             nan     0.1000   -0.0008
##    100        0.8463             nan     0.1000   -0.0008
##    120        0.8447             nan     0.1000   -0.0003
##    140        0.8422             nan     0.1000   -0.0003
##    150        0.8408             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9736             nan     0.1000    0.0111
##      2        0.9526             nan     0.1000    0.0086
##      3        0.9392             nan     0.1000    0.0049
##      4        0.9273             nan     0.1000    0.0037
##      5        0.9170             nan     0.1000    0.0039
##      6        0.9087             nan     0.1000    0.0039
##      7        0.9006             nan     0.1000    0.0034
##      8        0.8942             nan     0.1000    0.0029
##      9        0.8898             nan     0.1000    0.0018
##     10        0.8845             nan     0.1000    0.0014
##     20        0.8610             nan     0.1000   -0.0003
##     40        0.8451             nan     0.1000   -0.0006
##     60        0.8413             nan     0.1000   -0.0012
##     80        0.8370             nan     0.1000   -0.0010
##    100        0.8351             nan     0.1000   -0.0004
##    120        0.8350             nan     0.1000   -0.0019
##    140        0.8330             nan     0.1000   -0.0014
##    150        0.8318             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9730             nan     0.1000    0.0112
##      2        0.9541             nan     0.1000    0.0082
##      3        0.9392             nan     0.1000    0.0075
##      4        0.9257             nan     0.1000    0.0052
##      5        0.9147             nan     0.1000    0.0034
##      6        0.9056             nan     0.1000    0.0041
##      7        0.8975             nan     0.1000    0.0030
##      8        0.8896             nan     0.1000    0.0017
##      9        0.8838             nan     0.1000    0.0019
##     10        0.8797             nan     0.1000    0.0012
##     20        0.8552             nan     0.1000   -0.0022
##     40        0.8402             nan     0.1000   -0.0024
##     60        0.8344             nan     0.1000   -0.0005
##     80        0.8318             nan     0.1000   -0.0012
##    100        0.8298             nan     0.1000   -0.0009
##    120        0.8279             nan     0.1000   -0.0016
##    140        0.8291             nan     0.1000   -0.0017
##    150        0.8287             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0105
##      2        0.9540             nan     0.1000    0.0066
##      3        0.9430             nan     0.1000    0.0059
##      4        0.9320             nan     0.1000    0.0022
##      5        0.9219             nan     0.1000    0.0042
##      6        0.9141             nan     0.1000    0.0034
##      7        0.9073             nan     0.1000    0.0034
##      8        0.9033             nan     0.1000    0.0009
##      9        0.8972             nan     0.1000    0.0027
##     10        0.8908             nan     0.1000    0.0021
##     20        0.8669             nan     0.1000   -0.0002
##     40        0.8488             nan     0.1000   -0.0010
##     60        0.8445             nan     0.1000    0.0001
##     80        0.8430             nan     0.1000   -0.0003
##    100        0.8416             nan     0.1000   -0.0005
##    120        0.8393             nan     0.1000   -0.0009
##    140        0.8378             nan     0.1000   -0.0007
##    150        0.8375             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0113
##      2        0.9538             nan     0.1000    0.0101
##      3        0.9388             nan     0.1000    0.0085
##      4        0.9264             nan     0.1000    0.0062
##      5        0.9114             nan     0.1000    0.0050
##      6        0.9028             nan     0.1000    0.0041
##      7        0.8969             nan     0.1000    0.0025
##      8        0.8890             nan     0.1000    0.0031
##      9        0.8815             nan     0.1000    0.0029
##     10        0.8798             nan     0.1000   -0.0003
##     20        0.8536             nan     0.1000   -0.0016
##     40        0.8397             nan     0.1000   -0.0005
##     60        0.8331             nan     0.1000   -0.0011
##     80        0.8296             nan     0.1000   -0.0007
##    100        0.8281             nan     0.1000   -0.0010
##    120        0.8259             nan     0.1000   -0.0008
##    140        0.8250             nan     0.1000   -0.0009
##    150        0.8243             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9699             nan     0.1000    0.0122
##      2        0.9498             nan     0.1000    0.0081
##      3        0.9361             nan     0.1000    0.0075
##      4        0.9231             nan     0.1000    0.0062
##      5        0.9088             nan     0.1000    0.0050
##      6        0.8964             nan     0.1000    0.0036
##      7        0.8889             nan     0.1000    0.0023
##      8        0.8843             nan     0.1000    0.0015
##      9        0.8761             nan     0.1000    0.0016
##     10        0.8703             nan     0.1000    0.0021
##     20        0.8456             nan     0.1000   -0.0004
##     40        0.8309             nan     0.1000   -0.0005
##     60        0.8265             nan     0.1000   -0.0004
##     80        0.8240             nan     0.1000   -0.0014
##    100        0.8229             nan     0.1000   -0.0007
##    120        0.8214             nan     0.1000   -0.0012
##    140        0.8198             nan     0.1000   -0.0020
##    150        0.8198             nan     0.1000   -0.0017
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9755             nan     0.1000    0.0075
##      2        0.9613             nan     0.1000    0.0071
##      3        0.9474             nan     0.1000    0.0052
##      4        0.9378             nan     0.1000    0.0042
##      5        0.9325             nan     0.1000    0.0007
##      6        0.9249             nan     0.1000    0.0042
##      7        0.9168             nan     0.1000    0.0039
##      8        0.9138             nan     0.1000   -0.0001
##      9        0.9096             nan     0.1000    0.0003
##     10        0.9058             nan     0.1000    0.0007
##     20        0.8706             nan     0.1000   -0.0001
##     40        0.8548             nan     0.1000    0.0001
##     60        0.8509             nan     0.1000   -0.0003
##     80        0.8469             nan     0.1000   -0.0007
##    100        0.8438             nan     0.1000   -0.0002
##    120        0.8419             nan     0.1000   -0.0009
##    140        0.8393             nan     0.1000   -0.0010
##    150        0.8398             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9722             nan     0.1000    0.0083
##      2        0.9556             nan     0.1000    0.0090
##      3        0.9401             nan     0.1000    0.0066
##      4        0.9260             nan     0.1000    0.0051
##      5        0.9142             nan     0.1000    0.0047
##      6        0.9077             nan     0.1000    0.0031
##      7        0.9003             nan     0.1000    0.0027
##      8        0.8947             nan     0.1000    0.0021
##      9        0.8891             nan     0.1000    0.0023
##     10        0.8850             nan     0.1000    0.0021
##     20        0.8594             nan     0.1000   -0.0004
##     40        0.8441             nan     0.1000   -0.0004
##     60        0.8361             nan     0.1000   -0.0026
##     80        0.8314             nan     0.1000   -0.0001
##    100        0.8271             nan     0.1000   -0.0005
##    120        0.8271             nan     0.1000   -0.0009
##    140        0.8259             nan     0.1000   -0.0011
##    150        0.8246             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9709             nan     0.1000    0.0117
##      2        0.9486             nan     0.1000    0.0093
##      3        0.9298             nan     0.1000    0.0066
##      4        0.9197             nan     0.1000    0.0052
##      5        0.9086             nan     0.1000    0.0043
##      6        0.9019             nan     0.1000    0.0017
##      7        0.8971             nan     0.1000    0.0022
##      8        0.8907             nan     0.1000    0.0005
##      9        0.8854             nan     0.1000    0.0011
##     10        0.8813             nan     0.1000    0.0020
##     20        0.8567             nan     0.1000   -0.0008
##     40        0.8345             nan     0.1000   -0.0013
##     60        0.8266             nan     0.1000   -0.0011
##     80        0.8249             nan     0.1000   -0.0015
##    100        0.8236             nan     0.1000   -0.0017
##    120        0.8222             nan     0.1000   -0.0010
##    140        0.8213             nan     0.1000   -0.0007
##    150        0.8208             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9713             nan     0.1000    0.0087
##      2        0.9580             nan     0.1000    0.0067
##      3        0.9461             nan     0.1000    0.0060
##      4        0.9359             nan     0.1000    0.0051
##      5        0.9271             nan     0.1000    0.0033
##      6        0.9232             nan     0.1000   -0.0003
##      7        0.9131             nan     0.1000    0.0027
##      8        0.9070             nan     0.1000    0.0024
##      9        0.9011             nan     0.1000    0.0022
##     10        0.8951             nan     0.1000    0.0028
##     20        0.8618             nan     0.1000    0.0009
##     40        0.8494             nan     0.1000   -0.0008
##     60        0.8454             nan     0.1000   -0.0007
##     80        0.8411             nan     0.1000   -0.0003
##    100        0.8376             nan     0.1000   -0.0005
##    120        0.8358             nan     0.1000   -0.0003
##    140        0.8340             nan     0.1000   -0.0006
##    150        0.8335             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9741             nan     0.1000    0.0106
##      2        0.9481             nan     0.1000    0.0076
##      3        0.9315             nan     0.1000    0.0057
##      4        0.9199             nan     0.1000    0.0044
##      5        0.9129             nan     0.1000    0.0026
##      6        0.9032             nan     0.1000    0.0044
##      7        0.8961             nan     0.1000    0.0029
##      8        0.8887             nan     0.1000    0.0020
##      9        0.8860             nan     0.1000   -0.0002
##     10        0.8829             nan     0.1000   -0.0000
##     20        0.8554             nan     0.1000   -0.0010
##     40        0.8393             nan     0.1000   -0.0009
##     60        0.8338             nan     0.1000   -0.0006
##     80        0.8293             nan     0.1000   -0.0018
##    100        0.8262             nan     0.1000   -0.0005
##    120        0.8238             nan     0.1000   -0.0014
##    140        0.8210             nan     0.1000   -0.0010
##    150        0.8195             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9672             nan     0.1000    0.0090
##      2        0.9496             nan     0.1000    0.0077
##      3        0.9312             nan     0.1000    0.0085
##      4        0.9176             nan     0.1000    0.0052
##      5        0.9072             nan     0.1000    0.0044
##      6        0.8984             nan     0.1000    0.0048
##      7        0.8915             nan     0.1000    0.0023
##      8        0.8849             nan     0.1000    0.0016
##      9        0.8792             nan     0.1000    0.0012
##     10        0.8766             nan     0.1000    0.0003
##     20        0.8467             nan     0.1000   -0.0016
##     40        0.8292             nan     0.1000   -0.0007
##     60        0.8213             nan     0.1000   -0.0016
##     80        0.8193             nan     0.1000   -0.0013
##    100        0.8164             nan     0.1000   -0.0012
##    120        0.8162             nan     0.1000   -0.0007
##    140        0.8157             nan     0.1000   -0.0009
##    150        0.8153             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9787             nan     0.1000    0.0080
##      2        0.9627             nan     0.1000    0.0071
##      3        0.9498             nan     0.1000    0.0067
##      4        0.9400             nan     0.1000    0.0050
##      5        0.9316             nan     0.1000    0.0044
##      6        0.9223             nan     0.1000    0.0030
##      7        0.9138             nan     0.1000    0.0028
##      8        0.9074             nan     0.1000    0.0023
##      9        0.9044             nan     0.1000    0.0009
##     10        0.8977             nan     0.1000    0.0032
##     20        0.8684             nan     0.1000    0.0011
##     40        0.8544             nan     0.1000   -0.0003
##     60        0.8478             nan     0.1000   -0.0001
##     80        0.8437             nan     0.1000   -0.0013
##    100        0.8412             nan     0.1000   -0.0004
##    120        0.8400             nan     0.1000   -0.0014
##    140        0.8367             nan     0.1000   -0.0004
##    150        0.8362             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9703             nan     0.1000    0.0089
##      2        0.9515             nan     0.1000    0.0085
##      3        0.9370             nan     0.1000    0.0061
##      4        0.9262             nan     0.1000    0.0044
##      5        0.9137             nan     0.1000    0.0049
##      6        0.9060             nan     0.1000    0.0031
##      7        0.8980             nan     0.1000    0.0027
##      8        0.8926             nan     0.1000    0.0004
##      9        0.8855             nan     0.1000    0.0027
##     10        0.8814             nan     0.1000    0.0008
##     20        0.8558             nan     0.1000   -0.0001
##     40        0.8398             nan     0.1000   -0.0010
##     60        0.8339             nan     0.1000   -0.0004
##     80        0.8301             nan     0.1000   -0.0000
##    100        0.8283             nan     0.1000   -0.0006
##    120        0.8259             nan     0.1000   -0.0003
##    140        0.8238             nan     0.1000   -0.0012
##    150        0.8239             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9712             nan     0.1000    0.0118
##      2        0.9520             nan     0.1000    0.0087
##      3        0.9339             nan     0.1000    0.0074
##      4        0.9203             nan     0.1000    0.0038
##      5        0.9079             nan     0.1000    0.0045
##      6        0.9009             nan     0.1000    0.0040
##      7        0.8940             nan     0.1000    0.0012
##      8        0.8874             nan     0.1000    0.0017
##      9        0.8822             nan     0.1000    0.0010
##     10        0.8774             nan     0.1000    0.0013
##     20        0.8506             nan     0.1000   -0.0001
##     40        0.8302             nan     0.1000   -0.0007
##     60        0.8263             nan     0.1000   -0.0009
##     80        0.8221             nan     0.1000   -0.0010
##    100        0.8215             nan     0.1000   -0.0009
##    120        0.8208             nan     0.1000   -0.0005
##    140        0.8200             nan     0.1000   -0.0012
##    150        0.8195             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9753             nan     0.1000    0.0087
##      2        0.9609             nan     0.1000    0.0076
##      3        0.9490             nan     0.1000    0.0060
##      4        0.9347             nan     0.1000    0.0032
##      5        0.9241             nan     0.1000    0.0040
##      6        0.9163             nan     0.1000    0.0027
##      7        0.9098             nan     0.1000    0.0025
##      8        0.9061             nan     0.1000    0.0016
##      9        0.9004             nan     0.1000    0.0025
##     10        0.8963             nan     0.1000    0.0015
##     20        0.8712             nan     0.1000    0.0003
##     40        0.8569             nan     0.1000   -0.0003
##     60        0.8528             nan     0.1000   -0.0004
##     80        0.8507             nan     0.1000   -0.0008
##    100        0.8489             nan     0.1000   -0.0001
##    120        0.8472             nan     0.1000   -0.0002
##    140        0.8463             nan     0.1000   -0.0002
##    150        0.8453             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9736             nan     0.1000    0.0095
##      2        0.9580             nan     0.1000    0.0076
##      3        0.9435             nan     0.1000    0.0068
##      4        0.9315             nan     0.1000    0.0056
##      5        0.9199             nan     0.1000    0.0053
##      6        0.9099             nan     0.1000    0.0022
##      7        0.9030             nan     0.1000    0.0038
##      8        0.8967             nan     0.1000    0.0030
##      9        0.8901             nan     0.1000    0.0024
##     10        0.8857             nan     0.1000    0.0015
##     20        0.8611             nan     0.1000   -0.0003
##     40        0.8497             nan     0.1000   -0.0006
##     60        0.8427             nan     0.1000   -0.0004
##     80        0.8382             nan     0.1000   -0.0023
##    100        0.8364             nan     0.1000   -0.0005
##    120        0.8346             nan     0.1000   -0.0009
##    140        0.8333             nan     0.1000   -0.0009
##    150        0.8325             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9751             nan     0.1000    0.0117
##      2        0.9569             nan     0.1000    0.0095
##      3        0.9386             nan     0.1000    0.0071
##      4        0.9236             nan     0.1000    0.0060
##      5        0.9133             nan     0.1000    0.0038
##      6        0.9031             nan     0.1000    0.0028
##      7        0.8952             nan     0.1000    0.0021
##      8        0.8876             nan     0.1000    0.0025
##      9        0.8825             nan     0.1000    0.0005
##     10        0.8783             nan     0.1000    0.0001
##     20        0.8546             nan     0.1000   -0.0007
##     40        0.8421             nan     0.1000   -0.0011
##     60        0.8368             nan     0.1000   -0.0013
##     80        0.8328             nan     0.1000   -0.0007
##    100        0.8314             nan     0.1000   -0.0013
##    120        0.8295             nan     0.1000   -0.0015
##    140        0.8293             nan     0.1000   -0.0014
##    150        0.8288             nan     0.1000   -0.0019
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9845             nan     0.1000    0.0066
##      2        0.9700             nan     0.1000    0.0062
##      3        0.9580             nan     0.1000    0.0049
##      4        0.9482             nan     0.1000    0.0040
##      5        0.9404             nan     0.1000    0.0023
##      6        0.9322             nan     0.1000    0.0039
##      7        0.9270             nan     0.1000    0.0010
##      8        0.9245             nan     0.1000    0.0005
##      9        0.9167             nan     0.1000    0.0025
##     10        0.9114             nan     0.1000    0.0026
##     20        0.8816             nan     0.1000    0.0007
##     40        0.8642             nan     0.1000   -0.0005
##     60        0.8604             nan     0.1000   -0.0003
##     80        0.8589             nan     0.1000   -0.0001
##    100        0.8567             nan     0.1000   -0.0004
##    120        0.8545             nan     0.1000   -0.0008
##    140        0.8527             nan     0.1000   -0.0006
##    150        0.8521             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9778             nan     0.1000    0.0108
##      2        0.9594             nan     0.1000    0.0091
##      3        0.9464             nan     0.1000    0.0045
##      4        0.9339             nan     0.1000    0.0042
##      5        0.9256             nan     0.1000    0.0040
##      6        0.9179             nan     0.1000    0.0038
##      7        0.9092             nan     0.1000    0.0032
##      8        0.9018             nan     0.1000    0.0029
##      9        0.8962             nan     0.1000    0.0019
##     10        0.8907             nan     0.1000    0.0008
##     20        0.8737             nan     0.1000   -0.0001
##     40        0.8537             nan     0.1000   -0.0010
##     60        0.8493             nan     0.1000   -0.0010
##     80        0.8445             nan     0.1000   -0.0005
##    100        0.8433             nan     0.1000   -0.0010
##    120        0.8415             nan     0.1000   -0.0016
##    140        0.8401             nan     0.1000   -0.0009
##    150        0.8402             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9806             nan     0.1000    0.0079
##      2        0.9595             nan     0.1000    0.0084
##      3        0.9448             nan     0.1000    0.0063
##      4        0.9331             nan     0.1000    0.0043
##      5        0.9207             nan     0.1000    0.0044
##      6        0.9138             nan     0.1000    0.0022
##      7        0.9058             nan     0.1000    0.0021
##      8        0.8990             nan     0.1000    0.0024
##      9        0.8934             nan     0.1000    0.0010
##     10        0.8908             nan     0.1000   -0.0015
##     20        0.8639             nan     0.1000   -0.0012
##     40        0.8527             nan     0.1000   -0.0019
##     60        0.8445             nan     0.1000   -0.0029
##     80        0.8430             nan     0.1000   -0.0036
##    100        0.8416             nan     0.1000   -0.0014
##    120        0.8401             nan     0.1000   -0.0009
##    140        0.8392             nan     0.1000   -0.0009
##    150        0.8396             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9785             nan     0.1000    0.0070
##      2        0.9628             nan     0.1000    0.0074
##      3        0.9509             nan     0.1000    0.0054
##      4        0.9391             nan     0.1000    0.0051
##      5        0.9294             nan     0.1000    0.0040
##      6        0.9232             nan     0.1000    0.0026
##      7        0.9143             nan     0.1000    0.0041
##      8        0.9085             nan     0.1000   -0.0012
##      9        0.9030             nan     0.1000    0.0024
##     10        0.8987             nan     0.1000    0.0019
##     20        0.8704             nan     0.1000   -0.0004
##     40        0.8541             nan     0.1000   -0.0004
##     60        0.8496             nan     0.1000   -0.0011
##     80        0.8465             nan     0.1000   -0.0001
##    100        0.8448             nan     0.1000   -0.0005
##    120        0.8434             nan     0.1000   -0.0004
##    140        0.8407             nan     0.1000   -0.0001
##    150        0.8401             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9728             nan     0.1000    0.0111
##      2        0.9523             nan     0.1000    0.0078
##      3        0.9367             nan     0.1000    0.0067
##      4        0.9273             nan     0.1000    0.0032
##      5        0.9171             nan     0.1000    0.0051
##      6        0.9070             nan     0.1000    0.0037
##      7        0.9012             nan     0.1000    0.0008
##      8        0.8935             nan     0.1000    0.0031
##      9        0.8874             nan     0.1000    0.0027
##     10        0.8819             nan     0.1000    0.0014
##     20        0.8585             nan     0.1000    0.0007
##     40        0.8411             nan     0.1000   -0.0009
##     60        0.8346             nan     0.1000   -0.0021
##     80        0.8321             nan     0.1000   -0.0009
##    100        0.8284             nan     0.1000   -0.0012
##    120        0.8276             nan     0.1000   -0.0009
##    140        0.8269             nan     0.1000   -0.0009
##    150        0.8273             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9702             nan     0.1000    0.0104
##      2        0.9476             nan     0.1000    0.0092
##      3        0.9326             nan     0.1000    0.0069
##      4        0.9205             nan     0.1000    0.0049
##      5        0.9110             nan     0.1000    0.0039
##      6        0.9039             nan     0.1000    0.0016
##      7        0.8943             nan     0.1000    0.0037
##      8        0.8883             nan     0.1000    0.0007
##      9        0.8828             nan     0.1000   -0.0000
##     10        0.8784             nan     0.1000    0.0018
##     20        0.8508             nan     0.1000   -0.0000
##     40        0.8338             nan     0.1000   -0.0009
##     60        0.8295             nan     0.1000   -0.0013
##     80        0.8273             nan     0.1000   -0.0021
##    100        0.8265             nan     0.1000   -0.0016
##    120        0.8249             nan     0.1000   -0.0036
##    140        0.8234             nan     0.1000   -0.0016
##    150        0.8233             nan     0.1000   -0.0017
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9782             nan     0.1000    0.0090
##      2        0.9634             nan     0.1000    0.0064
##      3        0.9477             nan     0.1000    0.0050
##      4        0.9374             nan     0.1000    0.0045
##      5        0.9300             nan     0.1000    0.0024
##      6        0.9198             nan     0.1000    0.0047
##      7        0.9113             nan     0.1000    0.0034
##      8        0.9050             nan     0.1000    0.0018
##      9        0.9005             nan     0.1000    0.0009
##     10        0.8980             nan     0.1000    0.0003
##     20        0.8672             nan     0.1000    0.0012
##     40        0.8538             nan     0.1000   -0.0005
##     60        0.8505             nan     0.1000   -0.0008
##     80        0.8481             nan     0.1000   -0.0000
##    100        0.8464             nan     0.1000   -0.0008
##    120        0.8443             nan     0.1000   -0.0003
##    140        0.8433             nan     0.1000   -0.0005
##    150        0.8419             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9708             nan     0.1000    0.0119
##      2        0.9513             nan     0.1000    0.0077
##      3        0.9324             nan     0.1000    0.0081
##      4        0.9200             nan     0.1000    0.0055
##      5        0.9104             nan     0.1000    0.0050
##      6        0.9026             nan     0.1000    0.0012
##      7        0.8948             nan     0.1000    0.0027
##      8        0.8881             nan     0.1000    0.0026
##      9        0.8826             nan     0.1000    0.0017
##     10        0.8771             nan     0.1000    0.0021
##     20        0.8547             nan     0.1000   -0.0000
##     40        0.8446             nan     0.1000   -0.0031
##     60        0.8400             nan     0.1000   -0.0002
##     80        0.8358             nan     0.1000   -0.0000
##    100        0.8313             nan     0.1000   -0.0006
##    120        0.8310             nan     0.1000   -0.0004
##    140        0.8299             nan     0.1000   -0.0005
##    150        0.8284             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9730             nan     0.1000    0.0122
##      2        0.9511             nan     0.1000    0.0091
##      3        0.9336             nan     0.1000    0.0074
##      4        0.9210             nan     0.1000    0.0055
##      5        0.9078             nan     0.1000    0.0027
##      6        0.8988             nan     0.1000    0.0045
##      7        0.8907             nan     0.1000    0.0014
##      8        0.8842             nan     0.1000    0.0010
##      9        0.8791             nan     0.1000    0.0000
##     10        0.8754             nan     0.1000    0.0014
##     20        0.8526             nan     0.1000   -0.0002
##     40        0.8376             nan     0.1000   -0.0003
##     60        0.8335             nan     0.1000   -0.0014
##     80        0.8299             nan     0.1000   -0.0008
##    100        0.8291             nan     0.1000   -0.0014
##    120        0.8276             nan     0.1000   -0.0006
##    140        0.8264             nan     0.1000   -0.0007
##    150        0.8270             nan     0.1000   -0.0022
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9788             nan     0.1000    0.0100
##      2        0.9624             nan     0.1000    0.0081
##      3        0.9485             nan     0.1000    0.0053
##      4        0.9382             nan     0.1000    0.0050
##      5        0.9270             nan     0.1000    0.0048
##      6        0.9198             nan     0.1000    0.0032
##      7        0.9106             nan     0.1000    0.0025
##      8        0.9015             nan     0.1000    0.0023
##      9        0.8939             nan     0.1000    0.0012
##     10        0.8901             nan     0.1000    0.0018
##     20        0.8661             nan     0.1000   -0.0006
##     40        0.8502             nan     0.1000   -0.0004
##     60        0.8468             nan     0.1000   -0.0003
##     80        0.8418             nan     0.1000   -0.0002
##    100        0.8384             nan     0.1000   -0.0004
##    120        0.8382             nan     0.1000   -0.0007
##    140        0.8368             nan     0.1000   -0.0004
##    150        0.8367             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9707             nan     0.1000    0.0092
##      2        0.9538             nan     0.1000    0.0090
##      3        0.9365             nan     0.1000    0.0061
##      4        0.9252             nan     0.1000    0.0059
##      5        0.9139             nan     0.1000    0.0057
##      6        0.9045             nan     0.1000    0.0044
##      7        0.8952             nan     0.1000    0.0031
##      8        0.8878             nan     0.1000    0.0033
##      9        0.8800             nan     0.1000    0.0016
##     10        0.8745             nan     0.1000    0.0019
##     20        0.8520             nan     0.1000    0.0002
##     40        0.8369             nan     0.1000   -0.0015
##     60        0.8311             nan     0.1000   -0.0005
##     80        0.8269             nan     0.1000   -0.0008
##    100        0.8255             nan     0.1000   -0.0011
##    120        0.8232             nan     0.1000   -0.0007
##    140        0.8226             nan     0.1000   -0.0014
##    150        0.8220             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9695             nan     0.1000    0.0133
##      2        0.9503             nan     0.1000    0.0092
##      3        0.9323             nan     0.1000    0.0076
##      4        0.9169             nan     0.1000    0.0056
##      5        0.9035             nan     0.1000    0.0044
##      6        0.8957             nan     0.1000    0.0019
##      7        0.8867             nan     0.1000    0.0030
##      8        0.8810             nan     0.1000    0.0023
##      9        0.8738             nan     0.1000    0.0027
##     10        0.8687             nan     0.1000    0.0004
##     20        0.8440             nan     0.1000   -0.0006
##     40        0.8292             nan     0.1000   -0.0015
##     60        0.8238             nan     0.1000   -0.0006
##     80        0.8202             nan     0.1000   -0.0014
##    100        0.8209             nan     0.1000   -0.0005
##    120        0.8196             nan     0.1000   -0.0014
##    140        0.8188             nan     0.1000   -0.0017
##    150        0.8184             nan     0.1000   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9794             nan     0.1000    0.0075
##      2        0.9596             nan     0.1000    0.0067
##      3        0.9488             nan     0.1000    0.0047
##      4        0.9395             nan     0.1000    0.0040
##      5        0.9295             nan     0.1000    0.0030
##      6        0.9227             nan     0.1000    0.0025
##      7        0.9181             nan     0.1000    0.0017
##      8        0.9129             nan     0.1000    0.0011
##      9        0.9088             nan     0.1000    0.0007
##     10        0.9035             nan     0.1000    0.0024
##     20        0.8800             nan     0.1000    0.0001
##     40        0.8653             nan     0.1000    0.0000
##     60        0.8619             nan     0.1000   -0.0001
##     80        0.8585             nan     0.1000   -0.0005
##    100        0.8573             nan     0.1000   -0.0002
##    120        0.8546             nan     0.1000   -0.0003
##    140        0.8533             nan     0.1000   -0.0000
##    150        0.8526             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9744             nan     0.1000    0.0087
##      2        0.9556             nan     0.1000    0.0078
##      3        0.9429             nan     0.1000    0.0051
##      4        0.9314             nan     0.1000    0.0051
##      5        0.9214             nan     0.1000    0.0026
##      6        0.9120             nan     0.1000    0.0041
##      7        0.9061             nan     0.1000    0.0028
##      8        0.9015             nan     0.1000    0.0012
##      9        0.8962             nan     0.1000    0.0018
##     10        0.8904             nan     0.1000    0.0023
##     20        0.8718             nan     0.1000    0.0005
##     40        0.8554             nan     0.1000    0.0004
##     60        0.8479             nan     0.1000   -0.0010
##     80        0.8458             nan     0.1000   -0.0012
##    100        0.8421             nan     0.1000   -0.0009
##    120        0.8403             nan     0.1000   -0.0008
##    140        0.8385             nan     0.1000   -0.0015
##    150        0.8375             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9723             nan     0.1000    0.0102
##      2        0.9519             nan     0.1000    0.0072
##      3        0.9394             nan     0.1000    0.0066
##      4        0.9271             nan     0.1000    0.0045
##      5        0.9172             nan     0.1000    0.0042
##      6        0.9072             nan     0.1000    0.0043
##      7        0.9011             nan     0.1000    0.0011
##      8        0.8969             nan     0.1000    0.0011
##      9        0.8917             nan     0.1000    0.0004
##     10        0.8868             nan     0.1000    0.0013
##     20        0.8626             nan     0.1000   -0.0007
##     40        0.8451             nan     0.1000   -0.0013
##     60        0.8389             nan     0.1000   -0.0012
##     80        0.8365             nan     0.1000   -0.0020
##    100        0.8348             nan     0.1000   -0.0022
##    120        0.8331             nan     0.1000   -0.0013
##    140        0.8326             nan     0.1000   -0.0016
##    150        0.8328             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9786             nan     0.1000    0.0081
##      2        0.9601             nan     0.1000    0.0075
##      3        0.9502             nan     0.1000    0.0050
##      4        0.9391             nan     0.1000    0.0050
##      5        0.9282             nan     0.1000    0.0034
##      6        0.9234             nan     0.1000    0.0017
##      7        0.9163             nan     0.1000    0.0036
##      8        0.9103             nan     0.1000    0.0026
##      9        0.9045             nan     0.1000    0.0026
##     10        0.9025             nan     0.1000    0.0001
##     20        0.8755             nan     0.1000   -0.0002
##     40        0.8618             nan     0.1000   -0.0003
##     60        0.8589             nan     0.1000   -0.0005
##     80        0.8568             nan     0.1000   -0.0001
##    100        0.8537             nan     0.1000   -0.0003
##    120        0.8502             nan     0.1000   -0.0023
##    140        0.8483             nan     0.1000   -0.0003
##    150        0.8467             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9737             nan     0.1000    0.0093
##      2        0.9553             nan     0.1000    0.0079
##      3        0.9402             nan     0.1000    0.0044
##      4        0.9263             nan     0.1000    0.0027
##      5        0.9178             nan     0.1000    0.0019
##      6        0.9103             nan     0.1000    0.0025
##      7        0.9041             nan     0.1000    0.0022
##      8        0.8985             nan     0.1000    0.0020
##      9        0.8939             nan     0.1000    0.0017
##     10        0.8891             nan     0.1000    0.0021
##     20        0.8650             nan     0.1000   -0.0017
##     40        0.8474             nan     0.1000   -0.0008
##     60        0.8421             nan     0.1000   -0.0004
##     80        0.8382             nan     0.1000   -0.0003
##    100        0.8353             nan     0.1000   -0.0007
##    120        0.8336             nan     0.1000   -0.0006
##    140        0.8330             nan     0.1000   -0.0014
##    150        0.8327             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9725             nan     0.1000    0.0105
##      2        0.9554             nan     0.1000    0.0088
##      3        0.9399             nan     0.1000    0.0050
##      4        0.9288             nan     0.1000    0.0064
##      5        0.9169             nan     0.1000    0.0059
##      6        0.9084             nan     0.1000    0.0037
##      7        0.8993             nan     0.1000    0.0033
##      8        0.8911             nan     0.1000    0.0008
##      9        0.8855             nan     0.1000    0.0016
##     10        0.8822             nan     0.1000   -0.0007
##     20        0.8552             nan     0.1000   -0.0022
##     40        0.8431             nan     0.1000   -0.0004
##     60        0.8373             nan     0.1000   -0.0017
##     80        0.8340             nan     0.1000   -0.0026
##    100        0.8300             nan     0.1000   -0.0006
##    120        0.8302             nan     0.1000   -0.0022
##    140        0.8287             nan     0.1000   -0.0011
##    150        0.8268             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9749             nan     0.1000    0.0071
##      2        0.9645             nan     0.1000    0.0047
##      3        0.9530             nan     0.1000    0.0021
##      4        0.9409             nan     0.1000    0.0054
##      5        0.9308             nan     0.1000    0.0042
##      6        0.9231             nan     0.1000    0.0024
##      7        0.9168             nan     0.1000    0.0033
##      8        0.9089             nan     0.1000    0.0024
##      9        0.9044             nan     0.1000    0.0019
##     10        0.9019             nan     0.1000    0.0009
##     20        0.8689             nan     0.1000    0.0001
##     40        0.8553             nan     0.1000   -0.0009
##     60        0.8516             nan     0.1000   -0.0008
##     80        0.8491             nan     0.1000   -0.0001
##    100        0.8466             nan     0.1000   -0.0005
##    120        0.8449             nan     0.1000   -0.0014
##    140        0.8432             nan     0.1000   -0.0005
##    150        0.8425             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9736             nan     0.1000    0.0100
##      2        0.9514             nan     0.1000    0.0092
##      3        0.9382             nan     0.1000    0.0061
##      4        0.9240             nan     0.1000    0.0048
##      5        0.9142             nan     0.1000    0.0036
##      6        0.9045             nan     0.1000    0.0041
##      7        0.8957             nan     0.1000    0.0028
##      8        0.8906             nan     0.1000    0.0002
##      9        0.8852             nan     0.1000   -0.0008
##     10        0.8806             nan     0.1000    0.0025
##     20        0.8591             nan     0.1000   -0.0007
##     40        0.8451             nan     0.1000   -0.0034
##     60        0.8394             nan     0.1000   -0.0003
##     80        0.8362             nan     0.1000   -0.0009
##    100        0.8330             nan     0.1000   -0.0008
##    120        0.8321             nan     0.1000   -0.0025
##    140        0.8302             nan     0.1000   -0.0011
##    150        0.8297             nan     0.1000   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9738             nan     0.1000    0.0087
##      2        0.9573             nan     0.1000    0.0088
##      3        0.9408             nan     0.1000    0.0076
##      4        0.9262             nan     0.1000    0.0057
##      5        0.9164             nan     0.1000    0.0039
##      6        0.9061             nan     0.1000    0.0047
##      7        0.8984             nan     0.1000    0.0025
##      8        0.8932             nan     0.1000    0.0021
##      9        0.8884             nan     0.1000    0.0013
##     10        0.8822             nan     0.1000    0.0018
##     20        0.8521             nan     0.1000   -0.0008
##     40        0.8413             nan     0.1000   -0.0002
##     60        0.8335             nan     0.1000   -0.0013
##     80        0.8312             nan     0.1000   -0.0010
##    100        0.8288             nan     0.1000   -0.0027
##    120        0.8282             nan     0.1000   -0.0013
##    140        0.8258             nan     0.1000   -0.0010
##    150        0.8255             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9828             nan     0.1000    0.0081
##      2        0.9626             nan     0.1000    0.0077
##      3        0.9452             nan     0.1000    0.0049
##      4        0.9352             nan     0.1000    0.0050
##      5        0.9287             nan     0.1000    0.0032
##      6        0.9215             nan     0.1000    0.0033
##      7        0.9147             nan     0.1000    0.0031
##      8        0.9082             nan     0.1000    0.0015
##      9        0.9039             nan     0.1000    0.0009
##     10        0.8973             nan     0.1000    0.0014
##     20        0.8706             nan     0.1000   -0.0016
##     40        0.8582             nan     0.1000   -0.0013
##     60        0.8534             nan     0.1000   -0.0006
##     80        0.8507             nan     0.1000   -0.0003
##    100        0.8484             nan     0.1000   -0.0005
##    120        0.8457             nan     0.1000   -0.0006
##    140        0.8437             nan     0.1000   -0.0006
##    150        0.8430             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9752             nan     0.1000    0.0108
##      2        0.9543             nan     0.1000    0.0075
##      3        0.9426             nan     0.1000    0.0063
##      4        0.9297             nan     0.1000    0.0041
##      5        0.9193             nan     0.1000    0.0057
##      6        0.9096             nan     0.1000    0.0046
##      7        0.9034             nan     0.1000    0.0010
##      8        0.8978             nan     0.1000    0.0025
##      9        0.8908             nan     0.1000    0.0014
##     10        0.8851             nan     0.1000    0.0026
##     20        0.8593             nan     0.1000   -0.0002
##     40        0.8466             nan     0.1000   -0.0011
##     60        0.8393             nan     0.1000   -0.0010
##     80        0.8342             nan     0.1000   -0.0013
##    100        0.8313             nan     0.1000   -0.0013
##    120        0.8301             nan     0.1000   -0.0006
##    140        0.8279             nan     0.1000   -0.0005
##    150        0.8272             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0103
##      2        0.9524             nan     0.1000    0.0083
##      3        0.9323             nan     0.1000    0.0049
##      4        0.9214             nan     0.1000    0.0033
##      5        0.9116             nan     0.1000    0.0026
##      6        0.9029             nan     0.1000    0.0043
##      7        0.8947             nan     0.1000    0.0025
##      8        0.8873             nan     0.1000    0.0030
##      9        0.8820             nan     0.1000    0.0015
##     10        0.8768             nan     0.1000    0.0017
##     20        0.8507             nan     0.1000   -0.0005
##     40        0.8352             nan     0.1000   -0.0012
##     60        0.8277             nan     0.1000   -0.0012
##     80        0.8264             nan     0.1000   -0.0020
##    100        0.8246             nan     0.1000   -0.0025
##    120        0.8225             nan     0.1000   -0.0014
##    140        0.8221             nan     0.1000   -0.0021
##    150        0.8222             nan     0.1000   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9716             nan     0.1000    0.0074
##      2        0.9566             nan     0.1000    0.0070
##      3        0.9485             nan     0.1000    0.0033
##      4        0.9364             nan     0.1000    0.0047
##      5        0.9280             nan     0.1000    0.0035
##      6        0.9203             nan     0.1000    0.0037
##      7        0.9115             nan     0.1000    0.0036
##      8        0.9044             nan     0.1000    0.0026
##      9        0.8997             nan     0.1000    0.0016
##     10        0.8963             nan     0.1000    0.0012
##     20        0.8667             nan     0.1000    0.0004
##     40        0.8535             nan     0.1000    0.0001
##     60        0.8500             nan     0.1000   -0.0009
##     80        0.8488             nan     0.1000   -0.0004
##    100        0.8447             nan     0.1000   -0.0003
##    120        0.8424             nan     0.1000   -0.0010
##    140        0.8397             nan     0.1000   -0.0001
##    150        0.8394             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9722             nan     0.1000    0.0097
##      2        0.9516             nan     0.1000    0.0078
##      3        0.9332             nan     0.1000    0.0062
##      4        0.9206             nan     0.1000    0.0055
##      5        0.9119             nan     0.1000    0.0040
##      6        0.8998             nan     0.1000    0.0023
##      7        0.8944             nan     0.1000    0.0022
##      8        0.8877             nan     0.1000    0.0019
##      9        0.8832             nan     0.1000    0.0015
##     10        0.8801             nan     0.1000    0.0006
##     20        0.8566             nan     0.1000   -0.0003
##     40        0.8431             nan     0.1000   -0.0002
##     60        0.8386             nan     0.1000   -0.0007
##     80        0.8362             nan     0.1000   -0.0015
##    100        0.8328             nan     0.1000   -0.0016
##    120        0.8301             nan     0.1000   -0.0007
##    140        0.8284             nan     0.1000   -0.0018
##    150        0.8280             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9693             nan     0.1000    0.0118
##      2        0.9498             nan     0.1000    0.0081
##      3        0.9334             nan     0.1000    0.0073
##      4        0.9210             nan     0.1000    0.0054
##      5        0.9104             nan     0.1000    0.0033
##      6        0.9002             nan     0.1000    0.0038
##      7        0.8910             nan     0.1000    0.0034
##      8        0.8851             nan     0.1000    0.0011
##      9        0.8799             nan     0.1000    0.0011
##     10        0.8752             nan     0.1000    0.0004
##     20        0.8484             nan     0.1000    0.0002
##     40        0.8357             nan     0.1000   -0.0014
##     60        0.8302             nan     0.1000   -0.0014
##     80        0.8285             nan     0.1000   -0.0020
##    100        0.8234             nan     0.1000   -0.0008
##    120        0.8235             nan     0.1000   -0.0009
##    140        0.8233             nan     0.1000   -0.0009
##    150        0.8220             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9774             nan     0.1000    0.0093
##      2        0.9658             nan     0.1000    0.0072
##      3        0.9544             nan     0.1000    0.0055
##      4        0.9429             nan     0.1000    0.0055
##      5        0.9332             nan     0.1000    0.0008
##      6        0.9276             nan     0.1000    0.0012
##      7        0.9207             nan     0.1000    0.0038
##      8        0.9119             nan     0.1000    0.0024
##      9        0.9050             nan     0.1000    0.0029
##     10        0.9001             nan     0.1000    0.0017
##     20        0.8671             nan     0.1000    0.0011
##     40        0.8572             nan     0.1000   -0.0002
##     60        0.8527             nan     0.1000   -0.0004
##     80        0.8503             nan     0.1000   -0.0002
##    100        0.8496             nan     0.1000   -0.0010
##    120        0.8473             nan     0.1000   -0.0008
##    140        0.8446             nan     0.1000   -0.0005
##    150        0.8444             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9733             nan     0.1000    0.0102
##      2        0.9524             nan     0.1000    0.0084
##      3        0.9400             nan     0.1000    0.0067
##      4        0.9288             nan     0.1000    0.0046
##      5        0.9200             nan     0.1000    0.0049
##      6        0.9113             nan     0.1000    0.0040
##      7        0.9022             nan     0.1000    0.0030
##      8        0.8953             nan     0.1000    0.0025
##      9        0.8892             nan     0.1000    0.0015
##     10        0.8840             nan     0.1000    0.0009
##     20        0.8624             nan     0.1000   -0.0012
##     40        0.8444             nan     0.1000   -0.0009
##     60        0.8392             nan     0.1000   -0.0006
##     80        0.8343             nan     0.1000   -0.0016
##    100        0.8307             nan     0.1000   -0.0010
##    120        0.8303             nan     0.1000   -0.0014
##    140        0.8274             nan     0.1000   -0.0010
##    150        0.8273             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9760             nan     0.1000    0.0108
##      2        0.9528             nan     0.1000    0.0077
##      3        0.9349             nan     0.1000    0.0063
##      4        0.9237             nan     0.1000    0.0032
##      5        0.9124             nan     0.1000    0.0043
##      6        0.9008             nan     0.1000    0.0037
##      7        0.8942             nan     0.1000    0.0001
##      8        0.8843             nan     0.1000    0.0024
##      9        0.8806             nan     0.1000    0.0002
##     10        0.8739             nan     0.1000    0.0015
##     20        0.8494             nan     0.1000   -0.0006
##     40        0.8352             nan     0.1000   -0.0004
##     60        0.8297             nan     0.1000   -0.0004
##     80        0.8265             nan     0.1000   -0.0026
##    100        0.8241             nan     0.1000   -0.0007
##    120        0.8231             nan     0.1000   -0.0020
##    140        0.8209             nan     0.1000   -0.0024
##    150        0.8210             nan     0.1000   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9803             nan     0.1000    0.0091
##      2        0.9633             nan     0.1000    0.0070
##      3        0.9488             nan     0.1000    0.0063
##      4        0.9392             nan     0.1000    0.0051
##      5        0.9270             nan     0.1000    0.0022
##      6        0.9205             nan     0.1000    0.0012
##      7        0.9137             nan     0.1000    0.0031
##      8        0.9085             nan     0.1000    0.0006
##      9        0.9007             nan     0.1000    0.0037
##     10        0.8932             nan     0.1000    0.0030
##     20        0.8646             nan     0.1000    0.0011
##     40        0.8468             nan     0.1000   -0.0003
##     60        0.8407             nan     0.1000   -0.0005
##     80        0.8363             nan     0.1000   -0.0006
##    100        0.8349             nan     0.1000   -0.0001
##    120        0.8334             nan     0.1000   -0.0003
##    140        0.8332             nan     0.1000   -0.0006
##    150        0.8323             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9741             nan     0.1000    0.0104
##      2        0.9526             nan     0.1000    0.0083
##      3        0.9390             nan     0.1000    0.0070
##      4        0.9273             nan     0.1000    0.0057
##      5        0.9137             nan     0.1000    0.0042
##      6        0.9032             nan     0.1000    0.0018
##      7        0.8949             nan     0.1000    0.0031
##      8        0.8885             nan     0.1000    0.0027
##      9        0.8813             nan     0.1000    0.0014
##     10        0.8744             nan     0.1000    0.0017
##     20        0.8520             nan     0.1000   -0.0006
##     40        0.8358             nan     0.1000    0.0001
##     60        0.8303             nan     0.1000   -0.0005
##     80        0.8242             nan     0.1000   -0.0004
##    100        0.8217             nan     0.1000   -0.0005
##    120        0.8216             nan     0.1000   -0.0013
##    140        0.8202             nan     0.1000   -0.0012
##    150        0.8196             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9715             nan     0.1000    0.0114
##      2        0.9515             nan     0.1000    0.0096
##      3        0.9328             nan     0.1000    0.0067
##      4        0.9201             nan     0.1000    0.0063
##      5        0.9072             nan     0.1000    0.0036
##      6        0.8984             nan     0.1000    0.0040
##      7        0.8892             nan     0.1000    0.0035
##      8        0.8807             nan     0.1000    0.0030
##      9        0.8755             nan     0.1000    0.0013
##     10        0.8694             nan     0.1000    0.0020
##     20        0.8421             nan     0.1000   -0.0014
##     40        0.8264             nan     0.1000   -0.0004
##     60        0.8226             nan     0.1000   -0.0019
##     80        0.8178             nan     0.1000   -0.0023
##    100        0.8167             nan     0.1000   -0.0011
##    120        0.8165             nan     0.1000   -0.0013
##    140        0.8132             nan     0.1000   -0.0015
##    150        0.8125             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9801             nan     0.1000    0.0105
##      2        0.9616             nan     0.1000    0.0082
##      3        0.9470             nan     0.1000    0.0070
##      4        0.9365             nan     0.1000    0.0056
##      5        0.9270             nan     0.1000    0.0033
##      6        0.9194             nan     0.1000    0.0026
##      7        0.9129             nan     0.1000    0.0026
##      8        0.9085             nan     0.1000    0.0018
##      9        0.9007             nan     0.1000    0.0027
##     10        0.8961             nan     0.1000    0.0025
##     20        0.8658             nan     0.1000    0.0009
##     40        0.8528             nan     0.1000   -0.0001
##     60        0.8511             nan     0.1000   -0.0004
##     80        0.8480             nan     0.1000   -0.0002
##    100        0.8462             nan     0.1000   -0.0008
##    120        0.8439             nan     0.1000   -0.0010
##    140        0.8431             nan     0.1000   -0.0001
##    150        0.8422             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9758             nan     0.1000    0.0117
##      2        0.9499             nan     0.1000    0.0071
##      3        0.9388             nan     0.1000    0.0052
##      4        0.9266             nan     0.1000    0.0046
##      5        0.9160             nan     0.1000    0.0039
##      6        0.9069             nan     0.1000    0.0040
##      7        0.8996             nan     0.1000    0.0022
##      8        0.8921             nan     0.1000    0.0013
##      9        0.8859             nan     0.1000    0.0028
##     10        0.8802             nan     0.1000    0.0014
##     20        0.8570             nan     0.1000   -0.0002
##     40        0.8446             nan     0.1000   -0.0011
##     60        0.8388             nan     0.1000   -0.0009
##     80        0.8353             nan     0.1000   -0.0009
##    100        0.8334             nan     0.1000   -0.0008
##    120        0.8321             nan     0.1000   -0.0005
##    140        0.8308             nan     0.1000   -0.0010
##    150        0.8305             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9745             nan     0.1000    0.0125
##      2        0.9517             nan     0.1000    0.0105
##      3        0.9322             nan     0.1000    0.0085
##      4        0.9162             nan     0.1000    0.0054
##      5        0.9084             nan     0.1000    0.0023
##      6        0.8974             nan     0.1000    0.0030
##      7        0.8913             nan     0.1000    0.0024
##      8        0.8842             nan     0.1000    0.0019
##      9        0.8779             nan     0.1000    0.0018
##     10        0.8731             nan     0.1000    0.0007
##     20        0.8523             nan     0.1000   -0.0009
##     40        0.8395             nan     0.1000   -0.0024
##     60        0.8345             nan     0.1000   -0.0010
##     80        0.8318             nan     0.1000   -0.0008
##    100        0.8307             nan     0.1000   -0.0017
##    120        0.8290             nan     0.1000   -0.0011
##    140        0.8288             nan     0.1000   -0.0006
##    150        0.8281             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9725             nan     0.1000    0.0096
##      2        0.9591             nan     0.1000    0.0057
##      3        0.9471             nan     0.1000    0.0064
##      4        0.9357             nan     0.1000    0.0053
##      5        0.9258             nan     0.1000    0.0054
##      6        0.9150             nan     0.1000    0.0027
##      7        0.9084             nan     0.1000    0.0017
##      8        0.8999             nan     0.1000    0.0033
##      9        0.8970             nan     0.1000    0.0006
##     10        0.8929             nan     0.1000    0.0010
##     20        0.8600             nan     0.1000   -0.0003
##     40        0.8442             nan     0.1000   -0.0003
##     60        0.8418             nan     0.1000   -0.0005
##     80        0.8384             nan     0.1000   -0.0002
##    100        0.8375             nan     0.1000   -0.0005
##    120        0.8351             nan     0.1000   -0.0004
##    140        0.8342             nan     0.1000   -0.0011
##    150        0.8334             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9752             nan     0.1000    0.0105
##      2        0.9516             nan     0.1000    0.0090
##      3        0.9351             nan     0.1000    0.0090
##      4        0.9181             nan     0.1000    0.0047
##      5        0.9066             nan     0.1000    0.0039
##      6        0.8978             nan     0.1000    0.0045
##      7        0.8882             nan     0.1000    0.0029
##      8        0.8821             nan     0.1000    0.0015
##      9        0.8776             nan     0.1000    0.0010
##     10        0.8716             nan     0.1000    0.0019
##     20        0.8464             nan     0.1000   -0.0005
##     40        0.8387             nan     0.1000   -0.0028
##     60        0.8343             nan     0.1000   -0.0005
##     80        0.8295             nan     0.1000   -0.0011
##    100        0.8266             nan     0.1000   -0.0012
##    120        0.8249             nan     0.1000   -0.0014
##    140        0.8221             nan     0.1000   -0.0005
##    150        0.8211             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9635             nan     0.1000    0.0137
##      2        0.9420             nan     0.1000    0.0071
##      3        0.9239             nan     0.1000    0.0057
##      4        0.9081             nan     0.1000    0.0038
##      5        0.8963             nan     0.1000    0.0031
##      6        0.8893             nan     0.1000    0.0027
##      7        0.8827             nan     0.1000    0.0021
##      8        0.8766             nan     0.1000    0.0016
##      9        0.8711             nan     0.1000    0.0014
##     10        0.8660             nan     0.1000    0.0015
##     20        0.8444             nan     0.1000   -0.0011
##     40        0.8298             nan     0.1000   -0.0015
##     60        0.8240             nan     0.1000   -0.0026
##     80        0.8198             nan     0.1000   -0.0002
##    100        0.8192             nan     0.1000   -0.0023
##    120        0.8181             nan     0.1000   -0.0018
##    140        0.8166             nan     0.1000   -0.0021
##    150        0.8157             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9796             nan     0.1000    0.0088
##      2        0.9618             nan     0.1000    0.0074
##      3        0.9498             nan     0.1000    0.0058
##      4        0.9350             nan     0.1000    0.0067
##      5        0.9255             nan     0.1000    0.0033
##      6        0.9146             nan     0.1000    0.0035
##      7        0.9092             nan     0.1000    0.0017
##      8        0.9018             nan     0.1000    0.0031
##      9        0.8954             nan     0.1000    0.0026
##     10        0.8905             nan     0.1000    0.0017
##     20        0.8600             nan     0.1000    0.0005
##     40        0.8436             nan     0.1000    0.0002
##     60        0.8410             nan     0.1000   -0.0004
##     80        0.8383             nan     0.1000   -0.0002
##    100        0.8370             nan     0.1000   -0.0003
##    120        0.8352             nan     0.1000   -0.0004
##    140        0.8349             nan     0.1000   -0.0002
##    150        0.8339             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9680             nan     0.1000    0.0123
##      2        0.9495             nan     0.1000    0.0090
##      3        0.9335             nan     0.1000    0.0069
##      4        0.9182             nan     0.1000    0.0050
##      5        0.9079             nan     0.1000    0.0051
##      6        0.8984             nan     0.1000    0.0042
##      7        0.8903             nan     0.1000    0.0031
##      8        0.8829             nan     0.1000    0.0027
##      9        0.8763             nan     0.1000    0.0012
##     10        0.8715             nan     0.1000    0.0019
##     20        0.8474             nan     0.1000   -0.0009
##     40        0.8383             nan     0.1000   -0.0008
##     60        0.8339             nan     0.1000   -0.0015
##     80        0.8293             nan     0.1000   -0.0006
##    100        0.8269             nan     0.1000   -0.0025
##    120        0.8255             nan     0.1000   -0.0009
##    140        0.8231             nan     0.1000   -0.0006
##    150        0.8220             nan     0.1000   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9648             nan     0.1000    0.0109
##      2        0.9438             nan     0.1000    0.0080
##      3        0.9266             nan     0.1000    0.0079
##      4        0.9112             nan     0.1000    0.0063
##      5        0.9035             nan     0.1000    0.0026
##      6        0.8951             nan     0.1000    0.0041
##      7        0.8856             nan     0.1000    0.0003
##      8        0.8796             nan     0.1000    0.0031
##      9        0.8758             nan     0.1000    0.0009
##     10        0.8708             nan     0.1000    0.0012
##     20        0.8444             nan     0.1000   -0.0010
##     40        0.8294             nan     0.1000   -0.0022
##     60        0.8244             nan     0.1000   -0.0004
##     80        0.8210             nan     0.1000   -0.0009
##    100        0.8200             nan     0.1000   -0.0016
##    120        0.8187             nan     0.1000   -0.0008
##    140        0.8185             nan     0.1000   -0.0006
##    150        0.8186             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.9782             nan     0.1000    0.0092
##      2        0.9616             nan     0.1000    0.0078
##      3        0.9471             nan     0.1000    0.0053
##      4        0.9343             nan     0.1000    0.0049
##      5        0.9269             nan     0.1000    0.0034
##      6        0.9213             nan     0.1000    0.0030
##      7        0.9152             nan     0.1000    0.0029
##      8        0.9109             nan     0.1000    0.0018
##      9        0.9045             nan     0.1000    0.0028
##     10        0.8990             nan     0.1000    0.0024
##     20        0.8701             nan     0.1000    0.0004
##     40        0.8543             nan     0.1000   -0.0004
##     50        0.8523             nan     0.1000   -0.0002
boost_model
## Stochastic Gradient Boosting 
## 
## 786 samples
##   1 predictor
##   2 classes: 'bad', 'good' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times) 
## Summary of sample sizes: 707, 708, 708, 707, 707, 708, ... 
## Resampling results across tuning parameters:
## 
##   interaction.depth  n.trees  ROC        Sens        Spec     
##   1                   50      0.7473307  0.11050000  0.9666667
##   1                  100      0.7462831  0.10783333  0.9685714
##   1                  150      0.7436766  0.09966667  0.9666667
##   2                   50      0.7421177  0.10125000  0.9679365
##   2                  100      0.7376832  0.09100000  0.9647619
##   2                  150      0.7311687  0.10650000  0.9622222
##   3                   50      0.7372745  0.10100000  0.9660317
##   3                  100      0.7316958  0.10658333  0.9584127
##   3                  150      0.7279180  0.10391667  0.9555556
## 
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## Tuning parameter
##  'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 50, interaction.depth = 1, shrinkage = 0.1
##  and n.minobsinnode = 10.
boost_pred <- predict(boost_model, testset, type = "prob")

boost_measures <- fpr_tpr(p = boost_pred$good, dataset = testset)
plot(boost_measures$fpr, boost_measures$tpr, type = "l", col = 2,
     ylab = "TPR", xlab = "FPR")
title("ROC curve")
points(c(0, 1), c(0, 1), type = "l", lty = 2)

Here, we also could use some numbers and some visualizations in the caret package to compare three models.

resamp <- resamples(list(logistic = logistic_model, ann = ann_model, boost = boost_model))
summary(resamp)
## 
## Call:
## summary.resamples(object = resamp)
## 
## Models: logistic, ann, boost 
## Number of resamples: 50 
## 
## ROC 
##               Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## logistic 0.6011905 0.6866319 0.7726025 0.7503095 0.8085979 0.8539683    0
## ann      0.1944444 0.6921627 0.7526455 0.7386409 0.8031746 0.8894180    0
## boost    0.6488095 0.6996528 0.7457672 0.7473307 0.7745536 0.8710317    0
## 
## Sens 
##          Min. 1st Qu.     Median       Mean   3rd Qu.      Max. NA's
## logistic    0  0.0000 0.06666667 0.09083333 0.1333333 0.2500000    0
## ann         0  0.0000 0.06250000 0.03958333 0.0625000 0.1333333    0
## boost       0  0.0625 0.06666667 0.11050000 0.1875000 0.3333333    0
## 
## Spec 
##               Min.   1st Qu.   Median      Mean  3rd Qu. Max. NA's
## logistic 0.8571429 0.9722222 0.984127 0.9809524 1.000000    1    0
## ann      0.9682540 0.9841270 1.000000 0.9930159 1.000000    1    0
## boost    0.8730159 0.9523810 0.984127 0.9666667 0.984127    1    0
summary(diff(resamp))
## 
## Call:
## summary.diff.resamples(object = diff(resamp))
## 
## p-value adjustment: bonferroni 
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
## 
## ROC 
##          logistic ann       boost    
## logistic           0.011669  0.002979
## ann      1                  -0.008690
## boost    1        1                  
## 
## Sens 
##          logistic  ann      boost   
## logistic            0.05125 -0.01967
## ann      0.0004689          -0.07092
## boost    0.7704813 3.76e-05         
## 
## Spec 
##          logistic ann       boost   
## logistic          -0.01206   0.01429
## ann      0.01405             0.02635
## boost    0.02712  3.761e-06
# plot the difference between models
dotplot(resamp)

bwplot(resamp)

densityplot(resamp, auto.key = list(columns = 2))

Referenced:

  1. Applied Predictive Modeling

  2. http://topepo.github.io/caret/index.html

Just record, this article was posted at linkedin, and have 226 views to November 2021.