caret包应用之三:建模与参数优化
在进行建模时,需对模型的参数进行优化,在caret包中其主要函数命令是train
。
newdata4=newdata3[,Profile$optVariables]
inTrain = createDataPartition(mdrrClass, p = 3/4, list = FALSE)
trainx = newdata4[inTrain,]
testx = newdata4[-inTrain,]
trainy = mdrrClass[inTrain]
testy = mdrrClass[-inTrain]
method
确定多次交叉检验的抽样方法,number
确定了划分的重数,repeats
确定了反复次数。fitControl = trainControl(method = "repeatedcv", number = 10, repeats = 3,returnResamp = "all")
gbm
算法,相应的参数有如下三项:gbmGrid = expand.grid(.interaction.depth = c(1, 3),.n.trees = c(50, 100, 150, 200, 250, 300),.shrinkage = 0.1)
train
函数进行训练,使用的建模方法为提升决策树方法,gbmFit1 = train(trainx,trainy,method = "gbm",trControl = fitControl,tuneGrid = gbmGrid,verbose = FALSE)
从结果可以观察到interaction.depth
取1,n.trees
取150时精度最高
同样的图形观察
plot(gbmFit1)
轉載自:http://xccds1977.blogspot.com/2011/09/caret_1976.html
备注:转移自新浪博客,截至2021年11月,原阅读数153,评论0个。